1. pandarallel (pip install )
對于一個帶有Pandas DataFrame df的簡單用例和一個應(yīng)用func的函數(shù),只需用parallel_apply替換經(jīng)典的apply。
from pandarallel import pandarallel
# Initialization
pandarallel.initialize()
# Standard pandas apply
df.apply(func)
# Parallel apply
df.parallel_apply(func)
注意,如果不想并行化計算,仍然可以使用經(jīng)典的apply方法。
另外可以通過在initialize函數(shù)中傳遞progress_bar=True來顯示每個工作CPU的一個進度條。
2. joblib (pip install )
https://pypi.python.org/pypi/joblib
# Embarrassingly parallel helper: to make it easy to write readable parallel code and debug it quickly
from math import sqrt
from joblib import Parallel, delayed
def test():
start = time.time()
result1 = Parallel(n_jobs=1)(delayed(sqrt)(i**2) for i in range(10000))
end = time.time()
print(end-start)
result2 = Parallel(n_jobs=8)(delayed(sqrt)(i**2) for i in range(10000))
end2 = time.time()
print(end2-end)
-------輸出結(jié)果----------
0.4434356689453125
0.6346755027770996
3. multiprocessing
import multiprocessing as mp
with mp.Pool(mp.cpu_count()) as pool:
df['newcol'] = pool.map(f, df['col'])
multiprocessing.cpu_count()
返回系統(tǒng)的CPU數(shù)量。
該數(shù)量不同于當(dāng)前進程可以使用的CPU數(shù)量??捎玫腃PU數(shù)量可以由 len(os.sched_getaffinity(0)) 方法獲得。
可能引發(fā) NotImplementedError 。
參見os.cpu_count()
4. 幾種方法性能比較
(1)代碼
import sys
import time
import pandas as pd
import multiprocessing as mp
from joblib import Parallel, delayed
from pandarallel import pandarallel
from tqdm import tqdm, tqdm_notebook
def get_url_len(url):
url_list = url.split(".")
time.sleep(0.01) # 休眠0.01秒
return len(url_list)
def test1(data):
"""
不進行任何優(yōu)化
"""
start = time.time()
data['len'] = data['url'].apply(get_url_len)
end = time.time()
cost_time = end - start
res = sum(data['len'])
print("res:{}, cost time:{}".format(res, cost_time))
def test_mp(data):
"""
采用mp優(yōu)化
"""
start = time.time()
with mp.Pool(mp.cpu_count()) as pool:
data['len'] = pool.map(get_url_len, data['url'])
end = time.time()
cost_time = end - start
res = sum(data['len'])
print("test_mp \t res:{}, cost time:{}".format(res, cost_time))
def test_pandarallel(data):
"""
采用pandarallel優(yōu)化
"""
start = time.time()
pandarallel.initialize()
data['len'] = data['url'].parallel_apply(get_url_len)
end = time.time()
cost_time = end - start
res = sum(data['len'])
print("test_pandarallel \t res:{}, cost time:{}".format(res, cost_time))
def test_delayed(data):
"""
采用delayed優(yōu)化
"""
def key_func(subset):
subset["len"] = subset["url"].apply(get_url_len)
return subset
start = time.time()
data_grouped = data.groupby(data.index)
# data_grouped 是一個可迭代的對象,那么就可以使用 tqdm 來可視化進度條
results = Parallel(n_jobs=8)(delayed(key_func)(group) for name, group in tqdm(data_grouped))
data = pd.concat(results)
end = time.time()
cost_time = end - start
res = sum(data['len'])
print("test_delayed \t res:{}, cost time:{}".format(res, cost_time))
if __name__ == '__main__':
columns = ['title', 'url', 'pub_old', 'pub_new']
temp = pd.read_csv("./input.csv", names=columns, nrows=10000)
data = temp
"""
for i in range(99):
data = data.append(temp)
"""
print(len(data))
"""
test1(data)
test_mp(data)
test_pandarallel(data)
"""
test_delayed(data)
(2) 結(jié)果輸出
1k
res:4338, cost time:0.0018074512481689453
test_mp res:4338, cost time:0.2626469135284424
test_pandarallel res:4338, cost time:0.3467681407928467
1w
res:42936, cost time:0.008773326873779297
test_mp res:42936, cost time:0.26111721992492676
test_pandarallel res:42936, cost time:0.33237743377685547
10w
res:426742, cost time:0.07944369316101074
test_mp res:426742, cost time:0.294996976852417
test_pandarallel res:426742, cost time:0.39208269119262695
100w
res:4267420, cost time:0.8074917793273926
test_mp res:4267420, cost time:0.9741342067718506
test_pandarallel res:4267420, cost time:0.6779992580413818
1000w
res:42674200, cost time:8.027287006378174
test_mp res:42674200, cost time:7.751036882400513
test_pandarallel res:42674200, cost time:4.404983282089233
在get_url_len函數(shù)里加個sleep語句(模擬復(fù)雜邏輯),數(shù)據(jù)量為1k,運行結(jié)果如下:
1k
res:4338, cost time:10.054503679275513
test_mp res:4338, cost time:0.35697126388549805
test_pandarallel res:4338, cost time:0.43415403366088867
test_delayed res:4338, cost time:2.294757843017578
5. 小結(jié)
(1)如果數(shù)據(jù)量比較少,并行處理比單次執(zhí)行效率更慢;
(2)如果apply的函數(shù)邏輯簡單,并行處理比單次執(zhí)行效率更慢。
6. 問題及解決方法
(1)ImportError: This platform lacks a functioning sem_open implementation, therefore, the required synchronization primitives needed will not function, see issue 3770.
https://www.jianshu.com/p/0be1b4b27bde
(2)Linux查看物理CPU個數(shù)、核數(shù)、邏輯CPU個數(shù)
https://lover.blog.csdn.net/article/details/113951192
(3) 進度條的使用
https://www.jb51.net/article/206219.htm
到此這篇關(guān)于詳解pandas apply 并行處理的幾種方法的文章就介紹到這了,更多相關(guān)pandas apply 并行處理內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
您可能感興趣的文章:- pandas中apply和transform方法的性能比較及區(qū)別介紹
- 對pandas中apply函數(shù)的用法詳解
- pandas 使用apply同時處理兩列數(shù)據(jù)的方法
- pandas apply 函數(shù) 實現(xiàn)多進程的示例講解
- pandas使用apply多列生成一列數(shù)據(jù)的實例
- pandas apply多線程實現(xiàn)代碼
- pandas使用函數(shù)批量處理數(shù)據(jù)(map、apply、applymap)
- pandas提升計算效率的一些方法匯總