本文信息基于PG13.1。
從PG9.6開(kāi)始支持并行查詢。PG11開(kāi)始支持CREATE TABLE … AS、SELECT INTO以及CREATE MATERIALIZED VIEW的并行查詢。
先說(shuō)結(jié)論:
換用create table as 或者select into或者導(dǎo)入導(dǎo)出。
首先跟蹤如下查詢語(yǔ)句的執(zhí)行計(jì)劃:
select count(*) from test t1,test1 t2 where t1.id = t2.id ;
postgres=# explain analyze select count(*) from test t1,test1 t2 where t1.id = t2.id ;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------------
Finalize Aggregate (cost=34244.16..34244.17 rows=1 width=8) (actual time=683.246..715.324 rows=1 loops=1)
-> Gather (cost=34243.95..34244.16 rows=2 width=8) (actual time=681.474..715.311 rows=3 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Partial Aggregate (cost=33243.95..33243.96 rows=1 width=8) (actual time=674.689..675.285 rows=1 loops=3)
-> Parallel Hash Join (cost=15428.00..32202.28 rows=416667 width=0) (actual time=447.799..645.689 rows=333333 loops=3)
Hash Cond: (t1.id = t2.id)
-> Parallel Seq Scan on test t1 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.025..74.010 rows=333333 loops=3)
-> Parallel Hash (cost=8591.67..8591.67 rows=416667 width=4) (actual time=260.052..260.053 rows=333333 loops=3)
Buckets: 131072 Batches: 16 Memory Usage: 3520kB
-> Parallel Seq Scan on test1 t2 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.032..104.804 rows=333333 loops=3)
Planning Time: 0.420 ms
Execution Time: 715.447 ms
(13 rows)
可以看到走了兩個(gè)Workers。
下邊看一下insert into select:
postgres=# explain analyze insert into va select count(*) from test t1,test1 t2 where t1.id = t2.id ;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------
Insert on va (cost=73228.00..73228.02 rows=1 width=4) (actual time=3744.179..3744.187 rows=0 loops=1)
-> Subquery Scan on "*SELECT*" (cost=73228.00..73228.02 rows=1 width=4) (actual time=3743.343..3743.352 rows=1 loops=1)
-> Aggregate (cost=73228.00..73228.01 rows=1 width=8) (actual time=3743.247..3743.254 rows=1 loops=1)
-> Hash Join (cost=30832.00..70728.00 rows=1000000 width=0) (actual time=1092.295..3511.301 rows=1000000 loops=1)
Hash Cond: (t1.id = t2.id)
-> Seq Scan on test t1 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.030..421.537 rows=1000000 loops=1)
-> Hash (cost=14425.00..14425.00 rows=1000000 width=4) (actual time=1090.078..1090.081 rows=1000000 loops=1)
Buckets: 131072 Batches: 16 Memory Usage: 3227kB
-> Seq Scan on test1 t2 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.021..422.768 rows=1000000 loops=1)
Planning Time: 0.511 ms
Execution Time: 3745.633 ms
(11 rows)
可以看到并沒(méi)有Workers的指示,沒(méi)有啟用并行查詢。
即使開(kāi)啟強(qiáng)制并行,也無(wú)法走并行查詢。
postgres=# set force_parallel_mode =on;
SET
postgres=# explain analyze insert into va select count(*) from test t1,test1 t2 where t1.id = t2.id ;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------
Insert on va (cost=73228.00..73228.02 rows=1 width=4) (actual time=3825.042..3825.049 rows=0 loops=1)
-> Subquery Scan on "*SELECT*" (cost=73228.00..73228.02 rows=1 width=4) (actual time=3824.976..3824.984 rows=1 loops=1)
-> Aggregate (cost=73228.00..73228.01 rows=1 width=8) (actual time=3824.972..3824.978 rows=1 loops=1)
-> Hash Join (cost=30832.00..70728.00 rows=1000000 width=0) (actual time=1073.587..3599.402 rows=1000000 loops=1)
Hash Cond: (t1.id = t2.id)
-> Seq Scan on test t1 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.034..414.965 rows=1000000 loops=1)
-> Hash (cost=14425.00..14425.00 rows=1000000 width=4) (actual time=1072.441..1072.443 rows=1000000 loops=1)
Buckets: 131072 Batches: 16 Memory Usage: 3227kB
-> Seq Scan on test1 t2 (cost=0.00..14425.00 rows=1000000 width=4) (actual time=0.022..400.624 rows=1000000 loops=1)
Planning Time: 0.577 ms
Execution Time: 3825.923 ms
(11 rows)
原因在官方文檔有寫(xiě):
The query writes any data or locks any database rows. If a query contains a data-modifying operation either at the top level or within a CTE, no parallel plans for that query will be generated. As an exception, the commands CREATE TABLE … AS, SELECT INTO, and CREATE MATERIALIZED VIEW which create a new table and populate it can use a parallel plan.
解決方案有如下三種:
1.select into
postgres=# explain analyze select count(*) into vaa from test t1,test1 t2 where t1.id = t2.id ;
QUERY PLAN
--------------------------------------------------------------------------------------------------------------------------------------------------------
Finalize Aggregate (cost=34244.16..34244.17 rows=1 width=8) (actual time=742.736..774.923 rows=1 loops=1)
-> Gather (cost=34243.95..34244.16 rows=2 width=8) (actual time=740.223..774.907 rows=3 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Partial Aggregate (cost=33243.95..33243.96 rows=1 width=8) (actual time=731.408..731.413 rows=1 loops=3)
-> Parallel Hash Join (cost=15428.00..32202.28 rows=416667 width=0) (actual time=489.880..700.830 rows=333333 loops=3)
Hash Cond: (t1.id = t2.id)
-> Parallel Seq Scan on test t1 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.033..87.479 rows=333333 loops=3)
-> Parallel Hash (cost=8591.67..8591.67 rows=416667 width=4) (actual time=266.839..266.840 rows=333333 loops=3)
Buckets: 131072 Batches: 16 Memory Usage: 3520kB
-> Parallel Seq Scan on test1 t2 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.058..106.874 rows=333333 loops=3)
Planning Time: 0.319 ms
Execution Time: 783.300 ms
(13 rows)
2.create table as
postgres=# explain analyze create table vb as select count(*) from test t1,test1 t2 where t1.id = t2.id ;
QUERY PLAN
-------------------------------------------------------------------------------------------------------------------------------------------------------
Finalize Aggregate (cost=34244.16..34244.17 rows=1 width=8) (actual time=540.120..563.733 rows=1 loops=1)
-> Gather (cost=34243.95..34244.16 rows=2 width=8) (actual time=537.982..563.720 rows=3 loops=1)
Workers Planned: 2
Workers Launched: 2
-> Partial Aggregate (cost=33243.95..33243.96 rows=1 width=8) (actual time=526.602..527.136 rows=1 loops=3)
-> Parallel Hash Join (cost=15428.00..32202.28 rows=416667 width=0) (actual time=334.532..502.793 rows=333333 loops=3)
Hash Cond: (t1.id = t2.id)
-> Parallel Seq Scan on test t1 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.018..57.819 rows=333333 loops=3)
-> Parallel Hash (cost=8591.67..8591.67 rows=416667 width=4) (actual time=189.502..189.503 rows=333333 loops=3)
Buckets: 131072 Batches: 16 Memory Usage: 3520kB
-> Parallel Seq Scan on test1 t2 (cost=0.00..8591.67 rows=416667 width=4) (actual time=0.023..77.786 rows=333333 loops=3)
Planning Time: 0.189 ms
Execution Time: 565.448 ms
(13 rows)
3.或者通過(guò)導(dǎo)入導(dǎo)出的方式,例如:
psql -h localhost -d postgres -U postgres -c "select count(*) from test t1,test1 t2 where t1.id = t2.id " -o result.csv -A -t -F ","
psql -h localhost -d postgres -U postgres -c "COPY va FROM 'result.csv' WITH (FORMAT CSV, DELIMITER ',', HEADER FALSE, ENCODING 'windows-1252')"
一些場(chǎng)景下也會(huì)比非并行快。
到此這篇關(guān)于postgresql insert into select無(wú)法使用并行查詢的解決的文章就介紹到這了,更多相關(guān)postgresql insert into select并行查詢內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!
您可能感興趣的文章:- postgresql 13.1 insert into select并行查詢的實(shí)現(xiàn)
- mysql 中 replace into 與 insert into on duplicate key update 的用法和不同點(diǎn)實(shí)例分析
- SELECT INTO 和 INSERT INTO SELECT 兩種表復(fù)制語(yǔ)句詳解(SQL數(shù)據(jù)庫(kù)和Oracle數(shù)據(jù)庫(kù)的區(qū)別)
- php mysql insert into 結(jié)合詳解及實(shí)例代碼
- PHP+MySQL之Insert Into數(shù)據(jù)插入用法分析
- 正確使用MySQL INSERT INTO語(yǔ)句
- MySql中使用INSERT INTO語(yǔ)句更新多條數(shù)據(jù)的例子
- SQL insert into語(yǔ)句寫(xiě)法講解