主頁(yè) > 知識(shí)庫(kù) > Ruby實(shí)現(xiàn)的最優(yōu)二叉查找樹(shù)算法

Ruby實(shí)現(xiàn)的最優(yōu)二叉查找樹(shù)算法

熱門(mén)標(biāo)簽:高德地圖標(biāo)注客服 白銀外呼paas系統(tǒng) 百度地圖標(biāo)注自定義圖片 徐州網(wǎng)絡(luò)外呼系統(tǒng)哪個(gè)好 地圖標(biāo)注賺錢(qián)項(xiàng)目注冊(cè) 常德電銷(xiāo)平臺(tái)外呼系統(tǒng)軟件價(jià)格 電銷(xiāo)機(jī)器人廠(chǎng)商代理 滴滴外呼系統(tǒng) 湖州u友防封電銷(xiāo)卡

算法導(dǎo)論上的偽碼改寫(xiě)而成,加上導(dǎo)論的課后練習(xí)第一題的解的構(gòu)造函數(shù)。

復(fù)制代碼 代碼如下:

#encoding: utf-8
=begin
author: xu jin
date: Nov 11, 2012
Optimal Binary Search Tree
to find by using EditDistance algorithm
refer to introduction to algorithms>>
example output:
"k2 is the root of the tree."
"k1 is the left child of k2."
"d0 is the left child of k1."
"d1 is the right child of k1."
"k5 is the right child of k2."
"k4 is the left child of k5."
"k3 is the left child of k4."
"d2 is the left child of k3."
"d3 is the right child of k3."
"d4 is the right child of k4."
"d5 is the right child of k5."

The expected cost is 2.75. 
=end

INFINTIY = 1 / 0.0
a = ['', 'k1', 'k2', 'k3', 'k4', 'k5']
p = [0, 0.15, 0.10, 0.05, 0.10, 0.20]
q = [0.05, 0.10, 0.05, 0.05, 0.05 ,0.10]
e = Array.new(a.size + 1){Array.new(a.size + 1)}
root = Array.new(a.size + 1){Array.new(a.size + 1)}

def optimalBST(p, q, n, e, root)
  w = Array.new(p.size + 1){Array.new(p.size + 1)}
  for i in (1..n + 1)
    e[i][i - 1] = q[i - 1]
    w[i][i - 1] = q[i - 1]
  end
  for l in (1..n)
    for i in (1..n - l + 1)
      j = i + l -1
      e[i][j] = 1 / 0.0
      w[i][j] = w[i][j - 1] + p[j] + q[j]
      for r in (i..j)
        t = e[i][r - 1] + e[r + 1][j] + w[i][j]
        if t e[i][j]
          e[i][j] = t
          root[i][j] = r
        end
      end
    end
  end
end

def printBST(root, i ,j, signal)
  return if i > j
  if signal == 0
   p "k#{root[i][j]} is the root of the tree."
   signal = 1
  end
  r = root[i][j]
  #left child
  if r - 1 i
    p "d#{r - 1} is the left child of k#{r}."
  else
    p "k#{root[i][r - 1]} is the left child of k#{r}."
    printBST(root, i, r - 1, 1 )
  end
  #right child
  if r >= j
     p "d#{r} is the right child of k#{r}."
  else
    p "k#{root[r + 1][j]} is the right child of k#{r}."
    printBST(root, r + 1, j, 1)
  end
 
end

optimalBST(p, q, p.size - 1, e, root)
printBST(root, 1, a.size-1, 0)
puts "\nThe expected cost is #{e[1][a.size-1]}."

您可能感興趣的文章:
  • Ruby實(shí)現(xiàn)的各種排序算法
  • ruby實(shí)現(xiàn)的插入排序和冒泡排序算法
  • Ruby實(shí)現(xiàn)的矩陣連乘算法
  • Ruby實(shí)現(xiàn)二分搜索(二分查找)算法的簡(jiǎn)單示例
  • Ruby實(shí)現(xiàn)的3種快速排序算法
  • Ruby實(shí)現(xiàn)的合并排序算法
  • Ruby實(shí)現(xiàn)的圖片濾鏡算法代碼

標(biāo)簽:三沙 遼寧 荊門(mén) 普洱 張家界 公主嶺 永州 梧州

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《Ruby實(shí)現(xiàn)的最優(yōu)二叉查找樹(shù)算法》,本文關(guān)鍵詞  Ruby,實(shí)現(xiàn),的,最優(yōu),二叉,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《Ruby實(shí)現(xiàn)的最優(yōu)二叉查找樹(shù)算法》相關(guān)的同類(lèi)信息!
  • 本頁(yè)收集關(guān)于Ruby實(shí)現(xiàn)的最優(yōu)二叉查找樹(shù)算法的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章