流復(fù)制的原理:
物理復(fù)制也叫流復(fù)制,流復(fù)制的原理是主庫把WAL發(fā)送給備庫,備庫接收WAL后,進(jìn)行重放。
邏輯復(fù)制的原理:
邏輯復(fù)制也是基于WAL文件,在邏輯復(fù)制中把主庫稱為源端庫,備庫稱為目標(biāo)端數(shù)據(jù)庫,源端數(shù)據(jù)庫根據(jù)預(yù)先指定好的邏輯解析規(guī)則對WAL文件進(jìn)行解析,把DML操作解析成一定的邏輯變化信息(標(biāo)準(zhǔn)SQL語句),源端數(shù)據(jù)庫把標(biāo)準(zhǔn)SQL語句發(fā)給目標(biāo)端數(shù)據(jù)庫,目標(biāo)端數(shù)據(jù)庫接收到之后進(jìn)行應(yīng)用,從而實現(xiàn)數(shù)據(jù)同步。
流復(fù)制和邏輯復(fù)制的區(qū)別:
流復(fù)制主庫上的事務(wù)提交不需要等待備庫接收到WAL文件后的確認(rèn),邏輯復(fù)制相反。
流復(fù)制要求主備庫的大版本一致,邏輯復(fù)制可以跨大版本的數(shù)據(jù)同步,也可以實現(xiàn)異構(gòu)數(shù)據(jù)庫的數(shù)據(jù)同步。
流復(fù)制的主庫可讀寫,從庫只允許讀,邏輯復(fù)制的目標(biāo)端數(shù)據(jù)庫要求可讀寫
流復(fù)制是對實例級別的復(fù)制(整個postgresql數(shù)據(jù)庫),邏輯復(fù)制是選擇性的復(fù)制一些表,所以是對表級別的復(fù)制。
流復(fù)制有主庫的DDL、DML操作,邏輯復(fù)制只有DML操作。
補充:PostgreSQL 同步流復(fù)制原理和代碼淺析
背景
數(shù)據(jù)庫ACID中的持久化如何實現(xiàn)
數(shù)據(jù)庫ACID里面的D,持久化。 指的是對于用戶來說提交的事務(wù),數(shù)據(jù)是可靠的,即使數(shù)據(jù)庫crash了,在硬件完好的情況下,也能恢復(fù)回來。
PostgreSQL是怎么做到的呢,看一幅圖,畫得比較丑,湊合看吧。
假設(shè)一個事務(wù),對數(shù)據(jù)庫做了一些操作,并且產(chǎn)生了一些臟數(shù)據(jù),首先這些臟數(shù)據(jù)會在數(shù)據(jù)庫的shared buffer中。
同時,產(chǎn)生這些臟數(shù)據(jù)的同時也會產(chǎn)生對應(yīng)的redo信息,產(chǎn)生的REDO會有對應(yīng)的LSN號(你可以理解為REDO 的虛擬地址空間的一個唯一的OFFSET,每一筆REDO都有),這個LSN號也會記錄到shared buffer中對應(yīng)的臟頁中。
walwriter是負(fù)責(zé)將wal buffer flush到持久化設(shè)備的進(jìn)程,同時它會更新一個全局變量,記錄已經(jīng)flush的最大的LSN號。
bgwriter是負(fù)責(zé)將shared buffer的臟頁持久化到持久化設(shè)備的進(jìn)程,它在flush時,除了要遵循LRU算法之外,還要通過LSN全局變量的比對,來保證臟頁對應(yīng)的REDO記錄已經(jīng)flush到持久化設(shè)備了,如果發(fā)現(xiàn)還對應(yīng)的REDO沒有持久化,會觸發(fā)WAL writer去flush wal buffer。 (即確保日志比臟數(shù)據(jù)先落盤)
當(dāng)用戶提交事務(wù)時,也會產(chǎn)生一筆提交事務(wù)的REDO,這筆REDO也攜帶了LSN號。backend process 同樣需要等待對應(yīng)LSN flush到磁盤后才會返回給用戶提交成功的信號。(保證日志先落盤,然后返回給用戶)
數(shù)據(jù)庫同步復(fù)制原理淺析
同步流復(fù)制,即保證standby節(jié)點和本地節(jié)點的日志雙雙落盤。
PostgreSQL使用另一組全局變量,記錄同步流復(fù)制節(jié)點已經(jīng)接收到的XLOG LSN,以及已經(jīng)持久化的XLOG LSN。
用戶在發(fā)起提交請求后,backend process除了要判斷本地wal有沒有持久化,同時還需要判斷同步流復(fù)制節(jié)點的XLOG有沒有接收到或持久化(通過synchronous_commit參數(shù)控制)。
如果同步流復(fù)制節(jié)點的XLOG還沒有接收或持久化,backend process會進(jìn)入等待狀態(tài)。
數(shù)據(jù)庫同步復(fù)制代碼淺析
對應(yīng)的代碼和解釋如下:
CommitTransaction @ src/backend/access/transam/xact.c
RecordTransactionCommit @ src/backend/access/transam/xact.c
/*
* If we didn't create XLOG entries, we're done here; otherwise we
* should trigger flushing those entries the same as a commit record
* would. This will primarily happen for HOT pruning and the like; we
* want these to be flushed to disk in due time.
*/
if (!wrote_xlog) // 沒有產(chǎn)生redo的事務(wù),直接返回
goto cleanup;
if (wrote_xlog markXidCommitted) // 如果產(chǎn)生了redo, 等待同步流復(fù)制
SyncRepWaitForLSN(XactLastRecEnd);
SyncRepWaitForLSN @ src/backend/replication/syncrep.c
/*
* Wait for synchronous replication, if requested by user.
*
* Initially backends start in state SYNC_REP_NOT_WAITING and then
* change that state to SYNC_REP_WAITING before adding ourselves
* to the wait queue. During SyncRepWakeQueue() a WALSender changes
* the state to SYNC_REP_WAIT_COMPLETE once replication is confirmed.
* This backend then resets its state to SYNC_REP_NOT_WAITING.
*/
void
SyncRepWaitForLSN(XLogRecPtr XactCommitLSN)
{
...
/*
* Fast exit if user has not requested sync replication, or there are no
* sync replication standby names defined. Note that those standbys don't
* need to be connected.
*/
if (!SyncRepRequested() || !SyncStandbysDefined()) // 如果不是同步事務(wù)或者沒有定義同步流復(fù)制節(jié)點,直接返回
return;
...
/*
* We don't wait for sync rep if WalSndCtl->sync_standbys_defined is not
* set. See SyncRepUpdateSyncStandbysDefined.
*
* Also check that the standby hasn't already replied. Unlikely race
* condition but we'll be fetching that cache line anyway so it's likely
* to be a low cost check.
*/
if (!WalSndCtl->sync_standbys_defined ||
XactCommitLSN = WalSndCtl->lsn[mode]) // 如果沒有定義同步流復(fù)制節(jié)點,或者判斷到commit lsn小于已同步的LSN,說明XLOG已經(jīng)flush了,直接返回。
{
LWLockRelease(SyncRepLock);
return;
}
...
// 進(jìn)入循環(huán)等待狀態(tài),說明本地的xlog已經(jīng)flush了,只是等待同步流復(fù)制節(jié)點的REDO同步狀態(tài)。
/*
* Wait for specified LSN to be confirmed.
*
* Each proc has its own wait latch, so we perform a normal latch
* check/wait loop here.
*/
for (;;) // 進(jìn)入等待狀態(tài),檢查latch是否滿足釋放等待的條件(wal sender會根據(jù)REDO的同步情況,實時更新對應(yīng)的latch)
{
int syncRepState;
/* Must reset the latch before testing state. */
ResetLatch(MyProc->procLatch);
syncRepState = MyProc->syncRepState;
if (syncRepState == SYNC_REP_WAITING)
{
LWLockAcquire(SyncRepLock, LW_SHARED);
syncRepState = MyProc->syncRepState;
LWLockRelease(SyncRepLock);
}
if (syncRepState == SYNC_REP_WAIT_COMPLETE) // 說明XLOG同步完成,退出等待
break;
// 如果本地進(jìn)程掛了,輸出的消息內(nèi)容是,本地事務(wù)信息已持久化,但是遠(yuǎn)程也許還沒有持久化
if (ProcDiePending)
{
ereport(WARNING,
(errcode(ERRCODE_ADMIN_SHUTDOWN),
errmsg("canceling the wait for synchronous replication and terminating connection due to administrator command"),
errdetail("The transaction has already committed locally, but might not have been replicated to the standby.")));
whereToSendOutput = DestNone;
SyncRepCancelWait();
break;
}
// 如果用戶主動cancel query,輸出的消息內(nèi)容是,本地事務(wù)信息已持久化,但是遠(yuǎn)程也許還沒有持久化
if (QueryCancelPending)
{
QueryCancelPending = false;
ereport(WARNING,
(errmsg("canceling wait for synchronous replication due to user request"),
errdetail("The transaction has already committed locally, but might not have been replicated to the standby.")));
SyncRepCancelWait();
break;
}
// 如果postgres主進(jìn)程掛了,進(jìn)入退出流程。
if (!PostmasterIsAlive())
{
ProcDiePending = true;
whereToSendOutput = DestNone;
SyncRepCancelWait();
break;
}
// 等待wal sender來修改對應(yīng)的latch
/*
* Wait on latch. Any condition that should wake us up will set the
* latch, so no need for timeout.
*/
WaitLatch(MyProc->procLatch, WL_LATCH_SET | WL_POSTMASTER_DEATH, -1);
注意用戶進(jìn)入等待狀態(tài)后,只有主動cancel , 或者kill(terminate) , 或者主進(jìn)程die才能退出無限的等待狀態(tài)。后面會講到如何將同步級別降級為異步。
前面提到了,用戶端需要等待LATCH的釋放信號。
那么誰來給它這個信號了,是wal sender進(jìn)程,源碼和解釋如下 :
src/backend/replication/walsender.c
StartReplication
WalSndLoop
ProcessRepliesIfAny
ProcessStandbyMessage
ProcessStandbyReplyMessage
if (!am_cascading_walsender) // 非級聯(lián)流復(fù)制節(jié)點,那么它將調(diào)用SyncRepReleaseWaiters修改backend process等待隊列中它們對應(yīng)的 latch。
SyncRepReleaseWaiters();
SyncRepReleaseWaiters @ src/backend/replication/syncrep.c
/*
* Update the LSNs on each queue based upon our latest state. This
* implements a simple policy of first-valid-standby-releases-waiter.
*
* Other policies are possible, which would change what we do here and what
* perhaps also which information we store as well.
*/
void
SyncRepReleaseWaiters(void)
{
...
// 釋放滿足條件的等待隊列
/*
* Set the lsn first so that when we wake backends they will release up to
* this location.
*/
if (walsndctl->lsn[SYNC_REP_WAIT_WRITE] MyWalSnd->write)
{
walsndctl->lsn[SYNC_REP_WAIT_WRITE] = MyWalSnd->write;
numwrite = SyncRepWakeQueue(false, SYNC_REP_WAIT_WRITE);
}
if (walsndctl->lsn[SYNC_REP_WAIT_FLUSH] MyWalSnd->flush)
{
walsndctl->lsn[SYNC_REP_WAIT_FLUSH] = MyWalSnd->flush;
numflush = SyncRepWakeQueue(false, SYNC_REP_WAIT_FLUSH);
}
...
SyncRepWakeQueue @ src/backend/replication/syncrep.c
/*
* Walk the specified queue from head. Set the state of any backends that
* need to be woken, remove them from the queue, and then wake them.
* Pass all = true to wake whole queue; otherwise, just wake up to
* the walsender's LSN.
*
* Must hold SyncRepLock.
*/
static int
SyncRepWakeQueue(bool all, int mode)
{
...
while (proc) // 修改對應(yīng)的backend process 的latch
{
/*
* Assume the queue is ordered by LSN
*/
if (!all walsndctl->lsn[mode] proc->waitLSN)
return numprocs;
/*
* Move to next proc, so we can delete thisproc from the queue.
* thisproc is valid, proc may be NULL after this.
*/
thisproc = proc;
proc = (PGPROC *) SHMQueueNext((WalSndCtl->SyncRepQueue[mode]),
(proc->syncRepLinks),
offsetof(PGPROC, syncRepLinks));
/*
* Set state to complete; see SyncRepWaitForLSN() for discussion of
* the various states.
*/
thisproc->syncRepState = SYNC_REP_WAIT_COMPLETE; // 滿足條件時,改成SYNC_REP_WAIT_COMPLETE
....
如何設(shè)置事務(wù)可靠性級別
PostgreSQL 支持在會話中設(shè)置事務(wù)的可靠性級別。
off 表示commit 時不需要等待wal 持久化。
local 表示commit 是只需要等待本地數(shù)據(jù)庫的wal 持久化。
remote_write 表示commit 需要等待本地數(shù)據(jù)庫的wal 持久化,同時需要等待sync standby節(jié)點wal write buffer完成(不需要持久化)。
on 表示commit 需要等待本地數(shù)據(jù)庫的wal 持久化,同時需要等待sync standby節(jié)點wal持久化。
提醒一點, synchronous_commit 的任何一種設(shè)置,都不影響wal日志持久化必須先于shared buffer臟數(shù)據(jù)持久化。 所以不管你怎么設(shè)置,都不好影響數(shù)據(jù)的一致性。
synchronous_commit = off # synchronization level;
# off, local, remote_write, or on
如何實現(xiàn)同步復(fù)制降級
從前面的代碼解析可以得知,如果 backend process 進(jìn)入了等待循環(huán),只接受幾種信號降級。 并且降級后會告警,表示本地wal已持久化,但是sync standby節(jié)點不確定wal有沒有持久化。
如果你只配置了1個standby,并且將它配置為同步流復(fù)制節(jié)點。一旦出現(xiàn)網(wǎng)絡(luò)抖動,或者sync standby節(jié)點故障,將導(dǎo)致同步事務(wù)進(jìn)入等待狀態(tài)。
怎么降級呢?
方法1.
修改配置文件并重置
$ vi postgresql.conf
synchronous_commit = local
$ pg_ctl reload
然后cancel 所有query .
postgres=# select pg_cancel_backend(pid) from pg_stat_activity where pid>pg_backend_pid();
收到這樣的信號,表示事務(wù)成功提交,同時表示W(wǎng)AL不知道有沒有同步到sync standby。
WARNING: canceling wait for synchronous replication due to user request
DETAIL: The transaction has already committed locally, but might not have been replicated to the standby.
COMMIT
postgres=# show synchronous_commit ;
synchronous_commit
--------------------
off
(1 row)
同時它會讀到全局變量synchronous_commit 已經(jīng)是 local了。
這樣就完成了降級的動作。
方法2.
方法1的降級需要對已有的正在等待wal sync的pid使用cancel進(jìn)行處理,有點不人性化。
可以通過修改代碼的方式,做到更人性化。
SyncRepWaitForLSN for循環(huán)中,加一個判斷,如果發(fā)現(xiàn)全局變量sync commit變成local, off了,則告警并退出。這樣就不需要人為的去cancel query了.
WARNING: canceling wait for synchronous replication due to user request
DETAIL: The transaction has already committed locally, but might not have been replicated to the standby.
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。
您可能感興趣的文章:- PostgreSQL 邏輯復(fù)制 配置操作
- PostgreSQL 流復(fù)制異步轉(zhuǎn)同步的操作
- Postgresql 檢查數(shù)據(jù)庫主從復(fù)制進(jìn)度的操作
- PostgreSQL流復(fù)制參數(shù)max_wal_senders的用法說明
- CentOS PostgreSQL 12 主從復(fù)制(主從切換)操作