目錄
- 一、巧用索引與變量
- 1. 無索引對比測試
- 2. 建立created_time和item_name上的聯(lián)合索引對比測試
- 二、利用窗口函數(shù)
- 三、多線程并行執(zhí)行
- 1. 數(shù)據(jù)分片
- 2. 建立查重的存儲過程
- 3. 并行執(zhí)行
•問題提出
源表t_source結構如下:
item_id int,
created_time datetime,
modified_time datetime,
item_name varchar(20),
other varchar(20)
要求:
1.源表中有100萬條數(shù)據(jù),其中有50萬created_time和item_name重復。
2.要把去重后的50萬數(shù)據(jù)寫入到目標表。
3.重復created_time和item_name的多條數(shù)據(jù),可以保留任意一條,不做規(guī)則限制。
•實驗環(huán)境
Linux虛機:CentOS release 6.4;8G物理內存(MySQL配置4G);100G機械硬盤;雙物理CPU雙核,共四個處理器;MySQL 8.0.16。
•建立測試表和數(shù)據(jù)
-- 建立源表
create table t_source
( item_id int,
created_time datetime,
modified_time datetime,
item_name varchar(20),
other varchar(20)
);
-- 建立目標表
create table t_target like t_source;
-- 生成100萬測試數(shù)據(jù),其中有50萬created_time和item_name重復
delimiter //
create procedure sp_generate_data()
begin
set @i := 1;
while @i=500000 do
set @created_time := date_add('2017-01-01',interval @i second);
set @modified_time := @created_time;
set @item_name := concat('a',@i);
insert into t_source
values (@i,@created_time,@modified_time,@item_name,'other');
set @i:=@i+1;
end while;
commit;
set @last_insert_id := 500000;
insert into t_source
select item_id + @last_insert_id,
created_time,
date_add(modified_time,interval @last_insert_id second),
item_name,
'other'
from t_source;
commit;
end
//
delimiter ;
call sp_generate_data();
-- 源表沒有主鍵或唯一性約束,有可能存在兩條完全一樣的數(shù)據(jù),所以再插入一條記錄模擬這種情況。
insert into t_source select * from t_source where item_id=1;
源表中有1000001條記錄,去重后的目標表應該有500000條記錄。
mysql> select count(*),count(distinct created_time,item_name) from t_source;
+----------+----------------------------------------+
| count(*) | count(distinct created_time,item_name) |
+----------+----------------------------------------+
| 1000001 | 500000 |
+----------+----------------------------------------+
1 row in set (1.92 sec)
一、巧用索引與變量
1. 無索引對比測試
(1)使用相關子查詢
truncate t_target;
insert into t_target
select distinct t1.* from t_source t1 where item_id in
(select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);
這個語句很長時間都出不來結果,只看一下執(zhí)行計劃吧。
mysql> explain select distinct t1.* from t_source t1 where item_id in
-> (select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);
+----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
| 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using where; Using temporary |
| 2 | DEPENDENT SUBQUERY | t2 | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 1.00 | Using where |
+----+--------------------+-------+------------+------+---------------+------+---------+------+--------+----------+------------------------------+
2 rows in set, 3 warnings (0.00 sec)
主查詢和相關子查詢都是全表掃描,一共要掃描100萬*100萬數(shù)據(jù)行,難怪出不來結果。
(2)使用表連接
truncate t_target;
insert into t_target
select distinct t1.* from t_source t1,
(select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2
where t1.item_id = t2.item_id;
這種方法用時14秒,查詢計劃如下:
mysql> explain select distinct t1.* from t_source t1, (select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2 where t1.item_id = t2.item_id;
+----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
| 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using where; Using temporary |
| 1 | PRIMARY | derived2> | NULL | ref | auto_key0> | auto_key0> | 5 | test.t1.item_id | 10 | 100.00 | Distinct |
| 2 | DERIVED | t_source | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using temporary |
+----+-------------+------------+------------+------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
3 rows in set, 1 warning (0.00 sec)
•內層查詢掃描t_source表的100萬行,建立臨時表,找出去重后的最小item_id,生成導出表derived2,此導出表有50萬行。
•MySQL會在導出表derived2上自動創(chuàng)建一個item_id字段的索引auto_key0。
•外層查詢也要掃描t_source表的100萬行數(shù)據(jù),在與導出表做鏈接時,對t_source表每行的item_id,使用auto_key0索引查找導出表中匹配的行,并在此時優(yōu)化distinct操作,在找到第一個匹配的行后即停止查找同樣值的動作。
(3)使用變量
set @a:='1000-01-01 00:00:00';
set @b:=' ';
set @f:=0;
truncate t_target;
insert into t_target
select item_id,created_time,modified_time,item_name,other
from
(select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name
from
(select * from t_source order by created_time,item_name) t0) t1 where f=1;
這種方法用時13秒,查詢計劃如下:
mysql> explain select item_id,created_time,modified_time,item_name,other
-> from
-> (select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name
-> from
-> (select * from t_source order by created_time,item_name) t0) t1 where f=1;
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
| 1 | PRIMARY | derived2> | NULL | ref | auto_key0> | auto_key0> | 4 | const | 10 | 100.00 | NULL |
| 2 | DERIVED | derived3> | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | NULL |
| 3 | DERIVED | t_source | NULL | ALL | NULL | NULL | NULL | NULL | 997282 | 100.00 | Using filesort |
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
3 rows in set, 5 warnings (0.00 sec)
•最內層的查詢掃描t_source表的100萬行,并使用文件排序,生成導出表derived3。
•第二層查詢要掃描derived3的100萬行,生成導出表derived2,完成變量的比較和賦值,并自動創(chuàng)建一個導出列f上的索引auto_key0。
•最外層使用auto_key0索引掃描derived2得到去重的結果行。
與上面方法2比較,總的掃描行數(shù)不變,都是200萬行。只存在一點微小的差別,這次自動生成的索引是在常量列 f 上,而表關聯(lián)自動生成的索引是在item_id列上,所以查詢時間幾乎相同。
至此,我們還沒有在源表上創(chuàng)建任何索引。無論使用哪種寫法,要查重都需要對created_time和item_name字段進行排序,因此很自然地想到,如果在這兩個字段上建立聯(lián)合索引,利用索引本身有序的特性消除額外排序,從而提高查詢性能。
2. 建立created_time和item_name上的聯(lián)合索引對比測試
-- 建立created_time和item_name字段的聯(lián)合索引
create index idx_sort on t_source(created_time,item_name,item_id);
analyze table t_source;
(1)使用相關子查詢
truncate t_target;
insert into t_target
select distinct t1.* from t_source t1 where item_id in
(select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);
本次用時19秒,查詢計劃如下:
mysql> explain select distinct t1.* from t_source t1 where item_id in
-> (select min(item_id) from t_source t2 where t1.created_time=t2.created_time and t1.item_name=t2.item_name);
+----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
| 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 997281 | 100.00 | Using where; Using temporary |
| 2 | DEPENDENT SUBQUERY | t2 | NULL | ref | idx_sort | idx_sort | 89 | test.t1.created_time,test.t1.item_name | 2 | 100.00 | Using index |
+----+--------------------+-------+------------+------+---------------+----------+---------+----------------------------------------+--------+----------+------------------------------+
2 rows in set, 3 warnings (0.00 sec)
•外層查詢的t_source表是驅動表,需要掃描100萬行。
•對于驅動表每行的item_id,通過idx_sort索引查詢出兩行數(shù)據(jù)。
(2)使用表連接
truncate t_target;
insert into t_target
select distinct t1.* from t_source t1,
(select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2
where t1.item_id = t2.item_id;
本次用時13秒,查詢計劃如下:
mysql> explain select distinct t1.* from t_source t1,
-> (select min(item_id) item_id,created_time,item_name from t_source group by created_time,item_name) t2
-> where t1.item_id = t2.item_id;
+----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
| 1 | PRIMARY | t1 | NULL | ALL | NULL | NULL | NULL | NULL | 997281 | 100.00 | Using where; Using temporary |
| 1 | PRIMARY | derived2> | NULL | ref | auto_key0> | auto_key0> | 5 | test.t1.item_id | 10 | 100.00 | Distinct |
| 2 | DERIVED | t_source | NULL | index | idx_sort | idx_sort | 94 | NULL | 997281 | 100.00 | Using index |
+----+-------------+------------+------------+-------+---------------+-------------+---------+-----------------+--------+----------+------------------------------+
3 rows in set, 1 warning (0.00 sec)
和沒有索引相比,子查詢雖然從全表掃描變?yōu)榱巳饕龗呙?,但還是需要掃描100萬行記錄。因此查詢性能提升并不是明顯。
(3)使用變量
set @a:='1000-01-01 00:00:00';
set @b:=' ';
set @f:=0;
truncate t_target;
insert into t_target
select item_id,created_time,modified_time,item_name,other
from
(select t0.*,if(@a=created_time and @b=item_name,@f:=0,@f:=1) f, @a:=created_time,@b:=item_name
from
(select * from t_source order by created_time,item_name) t0) t1 where f=1;
本次用時13秒,查詢計劃與沒有索引時的完全相同??梢娝饕龑@種寫法沒有作用。能不能消除嵌套,只用一層查詢出結果呢?
(4)使用變量,并且消除嵌套查詢
set @a:='1000-01-01 00:00:00';
set @b:=' ';
truncate t_target;
insert into t_target
select * from t_source force index (idx_sort)
where (@a!=created_time or @b!=item_name) and (@a:=created_time) is not null and (@b:=item_name) is not null
order by created_time,item_name;
本次用時12秒,查詢計劃如下:
mysql> explain select * from t_source force index (idx_sort)
-> where (@a!=created_time or @b!=item_name) and (@a:=created_time) is not null and (@b:=item_name) is not null
-> order by created_time,item_name;
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
| 1 | SIMPLE | t_source | NULL | index | NULL | idx_sort | 94 | NULL | 997281 | 99.00 | Using where |
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-------------+
1 row in set, 3 warnings (0.00 sec)
該語句具有以下特點:
•消除了嵌套子查詢,只需要對t_source表進行一次全索引掃描,查詢計劃已達最優(yōu)。
•無需distinct二次查重。
•變量判斷與賦值只出現(xiàn)在where子句中。
•利用索引消除了filesort。
在MySQL 8之前,該語句是單線程去重的最佳解決方案。仔細分析這條語句,發(fā)現(xiàn)它巧妙地利用了SQL語句的邏輯查詢處理步驟和索引特性。一條SQL查詢的邏輯步驟為:
1.執(zhí)行笛卡爾乘積(交叉連接)
2.應用ON篩選器(連接條件)
3.添加外部行(outer join)
4.應用where篩選器
5.分組
6.應用cube或rollup
7.應用having篩選器
8.處理select列表
9.應用distinct子句
10.應用order by子句
11.應用limit子句
每條查詢語句的邏輯執(zhí)行步驟都是這11步的子集。拿這條查詢語句來說,其執(zhí)行順序為:強制通過索引idx_sort查找數(shù)據(jù)行 -> 應用where篩選器 -> 處理select列表 -> 應用order by子句。
為了使變量能夠按照created_time和item_name的排序順序進行賦值和比較,必須按照索引順序查找數(shù)據(jù)行。這里的force index (idx_sort)提示就起到了這個作用,必須這樣寫才能使整條查重語句成立。否則,因為先掃描表才處理排序,因此不能保證變量賦值的順序,也就不能確保查詢結果的正確性。order by子句同樣不可忽略,否則即使有force index提示,MySQL也會使用全表掃描而不是全索引掃描,從而使結果錯誤。索引同時保證了created_time,item_name的順序,避免了文件排序。force index (idx_sort)
提示和order by子句缺一不可,索引idx_sort在這里可謂恰到好處、一舉兩得。
查詢語句開始前,先給變量初始化為數(shù)據(jù)中不可能出現(xiàn)的值,然后進入where子句從左向右判斷。先比較變量和字段的值,再將本行created_time和item_name的值賦給變量,按created_time、item_name的順序逐行處理。item_name是字符串類型,(@b:=item_name)不是有效的布爾表達式,因此要寫成(@b:=item_name) is not null。
最后補充一句,這里忽略了“insert into t_target select * from t_source group by created_time,item_name
;”的寫法,因為它受“sql_mode='ONLY_FULL_GROUP_BY'
”的限制。
二、利用窗口函數(shù)
MySQL 8中新增的窗口函數(shù)使得原來麻煩的去重操作變得很簡單。
truncate t_target;
insert into t_target
select item_id, created_time, modified_time, item_name, other
from (select *, row_number() over(partition by created_time,item_name) as rn
from t_source) t where rn=1;
這個語句執(zhí)行只需要12秒,而且寫法清晰易懂,其查詢計劃如下:
mysql> explain select item_id, created_time, modified_time, item_name, other
-> from (select *, row_number() over(partition by created_time,item_name) as rn
-> from t_source) t where rn=1;
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
| 1 | PRIMARY | derived2> | NULL | ref | auto_key0> | auto_key0> | 8 | const | 10 | 100.00 | NULL |
| 2 | DERIVED | t_source | NULL | ALL | NULL | NULL | NULL | NULL | 997281 | 100.00 | Using filesort |
+----+-------------+------------+------------+------+---------------+-------------+---------+-------+--------+----------+----------------+
2 rows in set, 2 warnings (0.00 sec)
該查詢對t_source表進行了一次全表掃描,同時用filesort對表按分區(qū)字段created_time、item_name進行了排序。外層查詢從每個分區(qū)中保留一條數(shù)據(jù)。因為重復created_time
和item_name
的多條數(shù)據(jù)中可以保留任意一條,所以oevr中不需要使用order by子句。
從執(zhí)行計劃看,窗口函數(shù)去重語句似乎沒有消除嵌套查詢的變量去重好,但此方法實際執(zhí)行是最快的。
MySQL窗口函數(shù)說明參見“https://dev.mysql.com/doc/refman/8.0/en/window-functions.html”。
三、多線程并行執(zhí)行
前面已經(jīng)將單條查重語句調整到最優(yōu),但還是以單線程方式執(zhí)行。能否利用多處理器,讓去重操作多線程并行執(zhí)行,從而進一步提高速度呢?比如我的實驗環(huán)境是4處理器,如果使用4個線程同時執(zhí)行查重SQL,理論上應該接近4倍的性能提升。
1. 數(shù)據(jù)分片
在生成測試數(shù)據(jù)時,created_time采用每條記錄加一秒的方式,也就是最大和在最小的時間差為50萬秒,而且數(shù)據(jù)均勻分布,因此先把數(shù)據(jù)平均分成4份。
(1)查詢出4份數(shù)據(jù)的created_time邊界值
mysql> select date_add('2017-01-01',interval 125000 second) dt1,
-> date_add('2017-01-01',interval 2*125000 second) dt2,
-> date_add('2017-01-01',interval 3*125000 second) dt3,
-> max(created_time) dt4
-> from t_source;
+---------------------+---------------------+---------------------+---------------------+
| dt1 | dt2 | dt3 | dt4 |
+---------------------+---------------------+---------------------+---------------------+
| 2017-01-02 10:43:20 | 2017-01-03 21:26:40 | 2017-01-05 08:10:00 | 2017-01-06 18:53:20 |
+---------------------+---------------------+---------------------+---------------------+
1 row in set (0.00 sec)
(2)查看每份數(shù)據(jù)的記錄數(shù),確認數(shù)據(jù)平均分布
mysql> select case when created_time >= '2017-01-01'
-> and created_time '2017-01-02 10:43:20'
-> then '2017-01-01'
-> when created_time >= '2017-01-02 10:43:20'
-> and created_time '2017-01-03 21:26:40'
-> then '2017-01-02 10:43:20'
-> when created_time >= '2017-01-03 21:26:40'
-> and created_time '2017-01-05 08:10:00'
-> then '2017-01-03 21:26:40'
-> else '2017-01-05 08:10:00'
-> end min_dt,
-> case when created_time >= '2017-01-01'
-> and created_time '2017-01-02 10:43:20'
-> then '2017-01-02 10:43:20'
-> when created_time >= '2017-01-02 10:43:20'
-> and created_time '2017-01-03 21:26:40'
-> then '2017-01-03 21:26:40'
-> when created_time >= '2017-01-03 21:26:40'
-> and created_time '2017-01-05 08:10:00'
-> then '2017-01-05 08:10:00'
-> else '2017-01-06 18:53:20'
-> end max_dt,
-> count(*)
-> from t_source
-> group by case when created_time >= '2017-01-01'
-> and created_time '2017-01-02 10:43:20'
-> then '2017-01-01'
-> when created_time >= '2017-01-02 10:43:20'
-> and created_time '2017-01-03 21:26:40'
-> then '2017-01-02 10:43:20'
-> when created_time >= '2017-01-03 21:26:40'
-> and created_time '2017-01-05 08:10:00'
-> then '2017-01-03 21:26:40'
-> else '2017-01-05 08:10:00'
-> end,
-> case when created_time >= '2017-01-01'
-> and created_time '2017-01-02 10:43:20'
-> then '2017-01-02 10:43:20'
-> when created_time >= '2017-01-02 10:43:20'
-> and created_time '2017-01-03 21:26:40'
-> then '2017-01-03 21:26:40'
-> when created_time >= '2017-01-03 21:26:40'
-> and created_time '2017-01-05 08:10:00'
-> then '2017-01-05 08:10:00'
-> else '2017-01-06 18:53:20'
-> end;
+---------------------+---------------------+----------+
| min_dt | max_dt | count(*) |
+---------------------+---------------------+----------+
| 2017-01-01 | 2017-01-02 10:43:20 | 249999 |
| 2017-01-02 10:43:20 | 2017-01-03 21:26:40 | 250000 |
| 2017-01-03 21:26:40 | 2017-01-05 08:10:00 | 250000 |
| 2017-01-05 08:10:00 | 2017-01-06 18:53:20 | 250002 |
+---------------------+---------------------+----------+
4 rows in set (4.86 sec)
4份數(shù)據(jù)的并集應該覆蓋整個源數(shù)據(jù)集,并且數(shù)據(jù)之間是不重復的。也就是說4份數(shù)據(jù)的created_time要連續(xù)且互斥,連續(xù)保證處理全部數(shù)據(jù),互斥確保了不需要二次查重。實際上這和時間范圍分區(qū)的概念類似,或許用分區(qū)表更好些,只是這里省略了重建表的步驟。
2. 建立查重的存儲過程
有了以上信息我們就可以寫出4條語句處理全部數(shù)據(jù)。為了調用接口盡量簡單,建立下面的存儲過程。
delimiter //
create procedure sp_unique(i smallint)
begin
set @a:='1000-01-01 00:00:00';
set @b:=' ';
if (i4) then
insert into t_target
select * from t_source force index (idx_sort)
where created_time >= date_add('2017-01-01',interval (i-1)*125000 second)
and created_time date_add('2017-01-01',interval i*125000 second)
and (@a!=created_time or @b!=item_name)
and (@a:=created_time) is not null
and (@b:=item_name) is not null
order by created_time,item_name;
else
insert into t_target
select * from t_source force index (idx_sort)
where created_time >= date_add('2017-01-01',interval (i-1)*125000 second)
and created_time = date_add('2017-01-01',interval i*125000 second)
and (@a!=created_time or @b!=item_name)
and (@a:=created_time) is not null
and (@b:=item_name) is not null
order by created_time,item_name;
end if;
end
//
查詢語句的執(zhí)行計劃如下:
mysql> explain select * from t_source force index (idx_sort)
-> where created_time >= date_add('2017-01-01',interval (1-1)*125000 second)
-> and created_time date_add('2017-01-01',interval 1*125000 second)
-> and (@a!=created_time or @b!=item_name)
-> and (@a:=created_time) is not null
-> and (@b:=item_name) is not null
-> order by created_time,item_name;
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
| id | select_type | table | partitions | type | possible_keys | key | key_len | ref | rows | filtered | Extra |
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
| 1 | SIMPLE | t_source | NULL | range | idx_sort | idx_sort | 6 | NULL | 498640 | 100.00 | Using index condition |
+----+-------------+----------+------------+-------+---------------+----------+---------+------+--------+----------+-----------------------+
1 row in set, 3 warnings (0.00 sec)
MySQL優(yōu)化器進行索引范圍掃描,并且使用索引條件下推(ICP)優(yōu)化查詢。
3. 并行執(zhí)行
下面分別使用shell后臺進程和MySQL Schedule Event實現(xiàn)并行。
(1)shell后臺進程
•建立duplicate_removal.sh文件,內容如下:
#!/bin/bash
mysql -vvv -u root -p123456 test -e "truncate t_target" >/dev/null
date '+%H:%M:%S'
for y in {1..4}
do
sql="call sp_unique($y)"
mysql -vvv -u root -p123456 test -e "$sql" >par_sql1_$y.log
done
wait
date '+%H:%M:%S'
•執(zhí)行腳本文件
./duplicate_removal.sh
執(zhí)行輸出如下:
[mysql@hdp2~]$./duplicate_removal.sh
14:27:30
14:27:35
這種方法用時5秒,并行執(zhí)行的4個過程調用分別用時為4.87秒、4.88秒、4.91秒、4.73秒:
[mysql@hdp2~]$cat par_sql1_1.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(1)
--------------
Query OK, 124999 rows affected (4.87 sec)
Bye
[mysql@hdp2~]$cat par_sql1_2.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(2)
--------------
Query OK, 125000 rows affected (4.88 sec)
Bye
[mysql@hdp2~]$cat par_sql1_3.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(3)
--------------
Query OK, 125000 rows affected (4.91 sec)
Bye
[mysql@hdp2~]$cat par_sql1_4.log | sed '/^$/d'
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
call sp_unique(4)
--------------
Query OK, 125001 rows affected (4.73 sec)
Bye
[mysql@hdp2~]$
可以看到,每個過程的執(zhí)行時間均4.85,因為是并行執(zhí)行,總的過程執(zhí)行時間為最慢的4.91秒,比單線程速度提高了2.5倍。
(2)MySQL Schedule Event
•建立事件歷史日志表
-- 用于查看事件執(zhí)行時間等信息
create table t_event_history (
dbname varchar(128) not null default '',
eventname varchar(128) not null default '',
starttime datetime(3) not null default '1000-01-01 00:00:00',
endtime datetime(3) default null,
issuccess int(11) default null,
duration int(11) default null,
errormessage varchar(512) default null,
randno int(11) default null
);
•為每個并發(fā)線程創(chuàng)建一個事件
delimiter //
create event ev1 on schedule at current_timestamp + interval 1 hour on completion preserve disable do
begin
declare r_code char(5) default '00000';
declare r_msg text;
declare v_error integer;
declare v_starttime datetime default now(3);
declare v_randno integer default floor(rand()*100001);
insert into t_event_history (dbname,eventname,starttime,randno)
#作業(yè)名
values(database(),'ev1', v_starttime,v_randno);
begin
#異常處理段
declare continue handler for sqlexception
begin
set v_error = 1;
get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;
end;
#此處為實際調用的用戶程序過程
call sp_unique(1);
end;
update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno;
end
//
create event ev2 on schedule at current_timestamp + interval 1 hour on completion preserve disable do
begin
declare r_code char(5) default '00000';
declare r_msg text;
declare v_error integer;
declare v_starttime datetime default now(3);
declare v_randno integer default floor(rand()*100001);
insert into t_event_history (dbname,eventname,starttime,randno)
#作業(yè)名
values(database(),'ev2', v_starttime,v_randno);
begin
#異常處理段
declare continue handler for sqlexception
begin
set v_error = 1;
get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;
end;
#此處為實際調用的用戶程序過程
call sp_unique(2);
end;
update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno;
end
//
create event ev3 on schedule at current_timestamp + interval 1 hour on completion preserve disable do
begin
declare r_code char(5) default '00000';
declare r_msg text;
declare v_error integer;
declare v_starttime datetime default now(3);
declare v_randno integer default floor(rand()*100001);
insert into t_event_history (dbname,eventname,starttime,randno)
#作業(yè)名
values(database(),'ev3', v_starttime,v_randno);
begin
#異常處理段
declare continue handler for sqlexception
begin
set v_error = 1;
get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;
end;
#此處為實際調用的用戶程序過程
call sp_unique(3);
end;
update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno;
end
//
create event ev4 on schedule at current_timestamp + interval 1 hour on completion preserve disable do
begin
declare r_code char(5) default '00000';
declare r_msg text;
declare v_error integer;
declare v_starttime datetime default now(3);
declare v_randno integer default floor(rand()*100001);
insert into t_event_history (dbname,eventname,starttime,randno)
#作業(yè)名
values(database(),'ev4', v_starttime,v_randno);
begin
#異常處理段
declare continue handler for sqlexception
begin
set v_error = 1;
get diagnostics condition 1 r_code = returned_sqlstate , r_msg = message_text;
end;
#此處為實際調用的用戶程序過程
call sp_unique(4);
end;
update t_event_history set endtime=now(3),issuccess=isnull(v_error),duration=timestampdiff(microsecond,starttime,now(3)), errormessage=concat('error=',r_code,', message=',r_msg),randno=null where starttime=v_starttime and randno=v_randno;
end
//
為了記錄每個事件執(zhí)行的時間,在事件定義中增加了操作日志表的邏輯,因為每個事件中只多執(zhí)行了一條insert,一條update,4個事件總共多執(zhí)行8條很簡單的語句,對測試的影響可以忽略不計。執(zhí)行時間精確到毫秒。
•觸發(fā)事件執(zhí)行
mysql -vvv -u root -p123456 test -e "truncate t_target;alter event ev1 on schedule at current_timestamp enable;alter event ev2 on schedule at current_timestamp enable;alter event ev3 on schedule at current_timestamp enable;alter event ev4 on schedule at current_timestamp enable;"
該命令行順序觸發(fā)了4個事件,但不會等前一個執(zhí)行完才執(zhí)行下一個,而是立即向下執(zhí)行。這可從命令的輸出可以清除看到:
[mysql@hdp2~]$mysql -vvv -u root -p123456 test -e "truncate t_target;alter event ev1 on schedule at current_timestamp enable;alter event ev2 on schedule at current_timestamp enable;alter event ev3 on schedule at current_timestamp enable;alter event ev4 on schedule at current_timestamp enable;"
mysql: [Warning] Using a password on the command line interface can be insecure.
--------------
truncate t_target
--------------
Query OK, 0 rows affected (0.06 sec)
--------------
alter event ev1 on schedule at current_timestamp enable
--------------
Query OK, 0 rows affected (0.02 sec)
--------------
alter event ev2 on schedule at current_timestamp enable
--------------
Query OK, 0 rows affected (0.00 sec)
--------------
alter event ev3 on schedule at current_timestamp enable
--------------
Query OK, 0 rows affected (0.02 sec)
--------------
alter event ev4 on schedule at current_timestamp enable
--------------
Query OK, 0 rows affected (0.00 sec)
Bye
[mysql@hdp2~]$
•查看事件執(zhí)行日志
mysql> select * from test.t_event_history;
+--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
| dbname | eventname | starttime | endtime | issuccess | duration | errormessage | randno |
+--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
| test | ev1 | 2019-07-31 14:38:04.000 | 2019-07-31 14:38:09.389 | 1 | 5389000 | NULL | NULL |
| test | ev2 | 2019-07-31 14:38:04.000 | 2019-07-31 14:38:09.344 | 1 | 5344000 | NULL | NULL |
| test | ev3 | 2019-07-31 14:38:05.000 | 2019-07-31 14:38:09.230 | 1 | 4230000 | NULL | NULL |
| test | ev4 | 2019-07-31 14:38:05.000 | 2019-07-31 14:38:09.344 | 1 | 4344000 | NULL | NULL |
+--------+-----------+-------------------------+-------------------------+-----------+----------+--------------+--------+
4 rows in set (0.00 sec)
可以看到,每個過程的執(zhí)行均為4.83秒,又因為是并行執(zhí)行的,因此總的執(zhí)行之間為最慢的5.3秒,優(yōu)化效果和shell后臺進程方式幾乎相同。
總結
以上所述是小編給大家介紹的將MySQL去重操作優(yōu)化到極致的操作方法,希望對大家有所幫助,如果大家有任何疑問請給我留言,小編會及時回復大家的。在此也非常感謝大家對腳本之家網(wǎng)站的支持!
如果你覺得本文對你有幫助,歡迎轉載,煩請注明出處,謝謝!
您可能感興趣的文章:- 解析mysql中:單表distinct、多表group by查詢去除重復記錄
- mysql SELECT語句去除某個字段的重復信息
- MySQL 去除重復數(shù)據(jù)實例詳解
- 一條sql語句完成MySQL去重留一
- MySQL去重的方法整理
- mysql 開發(fā)技巧之JOIN 更新和數(shù)據(jù)查重/去重
- Mysql刪除重復的數(shù)據(jù) Mysql數(shù)據(jù)去重復
- mysql去重的兩種方法詳解及實例代碼
- MySQL數(shù)據(jù)表合并去重的簡單實現(xiàn)方法
- mysql自聯(lián)去重的一些筆記記錄
- mysql優(yōu)化小技巧之去除重復項實現(xiàn)方法分析【百萬級數(shù)據(jù)】