動(dòng)態(tài)規(guī)劃解決矩陣連乘問(wèn)題,隨機(jī)產(chǎn)生矩陣序列,輸出形如((A1(A2A3))(A4A5))的結(jié)果。
代碼:
#encoding: utf-8 =begin author: xu jin, 4100213 date: Oct 28, 2012 MatrixChain to find an optimum order by using MatrixChain algorithm example output: The given array is:[30, 35, 15, 5, 10, 20, 25] The optimum order is:((A1(A2A3))((A4A5)A6)) The total number of multiplications is: 15125 The random array is:[5, 8, 8, 2, 5, 9] The optimum order is:((A1(A2A3))(A4A5)) The total number of multiplications is: 388 =end INFINTIY = 1 / 0.0 p = [30, 35, 15, 5, 10, 20, 25] m, s = Array.new(p.size){Array.new(p.size)}, Array.new(p.size){Array.new(p.size)} def matrix_chain_order(p, m, s) n = p.size - 1 (1..n).each{|i| m[i][i] = 0} for r in (2..n) do for i in (1..n - r + 1) do j = r + i - 1 m[i][j] = INFINTIY for k in (i...j) do q = m[i][k] + m[k + 1][j] + p[i - 1] * p[k] * p[j] m[i][j], s[i][j] = q, k if(q m[i][j]) end end end end def print_optimal_parens(s, i, j) if(i == j) then print "A" + i.to_s else print "(" print_optimal_parens(s, i, s[i][j]) print_optimal_parens(s, s[i][j] + 1, j) print ")" end end def process(p, m, s) matrix_chain_order(p, m, s) print "The optimum order is:" print_optimal_parens(s, 1, p.size - 1) printf("\nThe total number of multiplications is: %d\n\n", m[1][p.size - 1]) end puts "The given array is:" + p.to_s process(p, m, s) #produce a random array p = Array.new x = rand(10) (0..x).each{|index| p[index] = rand(10) + 1} puts "The random array is:" + p.to_s m, s = Array.new(p.size){Array.new(p.size)}, Array.new(p.size){Array.new(p.size)} process(p, m, s)
標(biāo)簽:張家界 遼寧 三沙 普洱 荊門 梧州 公主嶺 永州
巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《Ruby實(shí)現(xiàn)的矩陣連乘算法》,本文關(guān)鍵詞 Ruby,實(shí)現(xiàn),的,矩陣,連乘,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。