這兩天寫了個作業(yè),關(guān)于學(xué)生選課系統(tǒng)的,隨后完成后也會發(fā)布到我的博客里面。室友的訪問速度幾乎是毫秒級,而我的起碼要等上四五秒鐘。
我總結(jié)的影響訪問速度的原因主要有以下幾種:
1、主機名
2、重復(fù)開、關(guān)數(shù)據(jù)庫
3、后臺數(shù)據(jù)庫中的數(shù)據(jù)過多,沒做數(shù)據(jù)優(yōu)化導(dǎo)致后臺查詢數(shù)據(jù)很慢
解決方法:
1、用IP地址代替localhost:mysql -h 127.0.0.1 -uroot -p
2、禁止mysql做域名解析: MySQL在處理新的線程連接請求時,會嘗試進行DNS解析,如果在host
cache和Hosts里找不到,處理起來就會很慢
因此最直接簡便的方法就是禁用該反向解析功能,可以通過修改MySQL的配置文件實現(xiàn),Linux下是my.cnf文件,windows下是my.ini文件,在配置
文件[mysqld]下新增如下一行代碼: skip-name-resolve
然后重啟MySQL服務(wù),再次連接發(fā)現(xiàn)已是秒連了。
這個方案的不足之處就是,以后在使用grant對用戶進行授權(quán)時只能使用IP格式,而不能使用主機名稱了。
通過修改系統(tǒng)hosts文件也可以實現(xiàn),舉例來說,我想解決192.168.1.100遠(yuǎn)程連接MySQL服務(wù)器緩慢的問題,只需要在MySQL庫所在服務(wù)器的hosts文件中新增一條記錄如下:192.168.1.100
test.com保存退出,再次遠(yuǎn)程連接該MySQL庫,同樣很快。之所以說絕,是因為這樣設(shè)置,你添加記錄的
192.168.1.100遠(yuǎn)程連接速度變快了,其他主機連接速度跟之前一樣慢。該方法同樣可以解決ssh遠(yuǎn)程連接某主機響應(yīng)很慢的問題,原理一樣。
3、開一次數(shù)據(jù)庫,等所有數(shù)據(jù)庫操作全部完成后再關(guān)閉游標(biāo)關(guān)閉數(shù)據(jù)庫,也能相對的加快訪問速度。
補充:python | MySQL 處理海量數(shù)據(jù)時優(yōu)化查詢速度方法
最近一段時間由于工作需要,開始關(guān)注針對Mysql數(shù)據(jù)庫的select查詢語句的相關(guān)優(yōu)化方法。
由于在參與的實際項目中發(fā)現(xiàn)當(dāng)mysql表的數(shù)據(jù)量達(dá)到百萬級時,普通SQL查詢效率呈直線下降,而且如果where中的查詢條件較多時,其查詢速度簡直無法容忍。曾經(jīng)測試對一個包含400多萬條記錄(有索引)的表執(zhí)行一條條件查詢,其查詢時間竟然高達(dá)40幾秒,相信這么高的查詢延時,任何用戶都會抓狂。因此如何提高sql語句查詢效率,顯得十分重要。以下是網(wǎng)上流傳比較廣泛的30種SQL查詢語句優(yōu)化方法:
1、應(yīng)盡量避免在 where 子句中使用!=或>操作符,否則將引擎放棄使用索引而進行全表掃描。
2、對查詢進行優(yōu)化,應(yīng)盡量避免全表掃描,首先應(yīng)考慮在 where 及 order by 涉及的列上建立索引。
3、應(yīng)盡量避免在 where 子句中對字段進行 null 值判斷,否則將導(dǎo)致引擎放棄使用索引而進行全表掃描,如:
select id from t where num is null
可以在num上設(shè)置默認(rèn)值0,確保表中num列沒有null值,然后這樣查詢:
select id from t where num=0
4、盡量避免在 where 子句中使用 or 來連接條件,否則將導(dǎo)致引擎放棄使用索引而進行全表掃描,如:
select id from t where num=10 or num=20
可以這樣查詢:
select id from t where num=10
union all
select id from t where num=20
5、下面的查詢也將導(dǎo)致全表掃描:(不能前置百分號)
select id from t where name like ‘�c%'
若要提高效率,可以考慮全文檢索。
6、in 和 not in 也要慎用,否則會導(dǎo)致全表掃描,如:
select id from t where num in(1,2,3)
對于連續(xù)的數(shù)值,能用 between 就不要用 in 了:
select id from t where num between 1 and 3
7、如果在 where 子句中使用參數(shù),也會導(dǎo)致全表掃描。因為SQL只有在運行時才會解析局部變量,但優(yōu)化程序不能將訪問計劃的選擇推遲到運行時;它必須在編譯時進行選擇。然 而,如果在編譯時建立訪問計劃,變量的值還是未知的,因而無法作為索引選擇的輸入項。如下面語句將進行全表掃描:
select id from t where num=@num
可以改為強制查詢使用索引:
select id from t with(index(索引名)) where num=@num
8、應(yīng)盡量避免在 where 子句中對字段進行表達(dá)式操作,這將導(dǎo)致引擎放棄使用索引而進行全表掃描。如:
select id from t where num/2=100
應(yīng)改為:
select id from t where num=100*2
9、應(yīng)盡量避免在where子句中對字段進行函數(shù)操作,這將導(dǎo)致引擎放棄使用索引而進行全表掃描。如:
select id from t where substring(name,1,3)='abc'–name以abc開頭的id
select id from t where datediff(day,createdate,'2005-11-30′)=0–'2005-11-30′生成的id
應(yīng)改為:
select id from t where name like ‘a(chǎn)bc%'
select id from t where createdate>='2005-11-30′ and createdate'2005-12-1′
10、不要在 where 子句中的“=”左邊進行函數(shù)、算術(shù)運算或其他表達(dá)式運算,否則系統(tǒng)將可能無法正確使用索引。
11、在使用索引字段作為條件時,如果該索引是復(fù)合索引,那么必須使用到該索引中的第一個字段作為條件時才能保證系統(tǒng)使用該索引,否則該索引將不會被使 用,并且應(yīng)盡可能的讓字段順序與索引順序相一致。
12、不要寫一些沒有意義的查詢,如需要生成一個空表結(jié)構(gòu):
select col1,col2 into #t from t where 1=0
這類代碼不會返回任何結(jié)果集,但是會消耗系統(tǒng)資源的,應(yīng)改成這樣:
13、很多時候用 exists 代替 in 是一個好的選擇:
select num from a where num in(select num from b)
用下面的語句替換:
select num from a where exists(select 1 from b where num=a.num)
14、并不是所有索引對查詢都有效,SQL是根據(jù)表中數(shù)據(jù)來進行查詢優(yōu)化的,當(dāng)索引列有大量數(shù)據(jù)重復(fù)時,SQL查詢可能不會去利用索引,如一表中有字段 sex,male、female幾乎各一半,那么即使在sex上建了索引也對查詢效率起不了作用。
15、索引并不是越多越好,索引固然可以提高相應(yīng)的 select 的效率,但同時也降低了 insert 及 update 的效率,因為 insert 或 update 時有可能會重建索引,所以怎樣建索引需要慎重考慮,視具體情況而定。一個表的索引數(shù)最好不要超過6個,若太多則應(yīng)考慮一些不常使用到的列上建的索引是否有 必要。
16.應(yīng)盡可能的避免更新 clustered 索引數(shù)據(jù)列,因為 clustered 索引數(shù)據(jù)列的順序就是表記錄的物理存儲順序,一旦該列值改變將導(dǎo)致整個表記錄的順序的調(diào)整,會耗費相當(dāng)大的資源。若應(yīng)用系統(tǒng)需要頻繁更新 clustered 索引數(shù)據(jù)列,那么需要考慮是否應(yīng)將該索引建為 clustered 索引。
17、盡量使用數(shù)字型字段,若只含數(shù)值信息的字段盡量不要設(shè)計為字符型,這會降低查詢和連接的性能,并會增加存儲開銷。這是因為引擎在處理查詢和連接時會 逐個比較字符串中每一個字符,而對于數(shù)字型而言只需要比較一次就夠了。
18、盡可能的使用 varchar/nvarchar 代替 char/nchar ,因為首先變長字段存儲空間小,可以節(jié)省存儲空間,其次對于查詢來說,在一個相對較小的字段內(nèi)搜索效率顯然要高些。
19、任何地方都不要使用 select * from t ,用具體的字段列表代替“*”,不要返回用不到的任何字段。
20、盡量使用表變量來代替臨時表。如果表變量包含大量數(shù)據(jù),請注意索引非常有限(只有主鍵索引)。
21、避免頻繁創(chuàng)建和刪除臨時表,以減少系統(tǒng)表資源的消耗。
22、臨時表并不是不可使用,適當(dāng)?shù)厥褂盟鼈兛梢允鼓承├谈行?,例如,?dāng)需要重復(fù)引用大型表或常用表中的某個數(shù)據(jù)集時。但是,對于一次性事件,最好使 用導(dǎo)出表。
23、在新建臨時表時,如果一次性插入數(shù)據(jù)量很大,那么可以使用 select into 代替 create table,避免造成大量 log ,以提高速度;如果數(shù)據(jù)量不大,為了緩和系統(tǒng)表的資源,應(yīng)先create table,然后insert。
24、如果使用到了臨時表,在存儲過程的最后務(wù)必將所有的臨時表顯式刪除,先 truncate table ,然后 drop table ,這樣可以避免系統(tǒng)表的較長時間鎖定。
25、盡量避免使用游標(biāo),因為游標(biāo)的效率較差,如果游標(biāo)操作的數(shù)據(jù)超過1萬行,那么就應(yīng)該考慮改寫。
26、使用基于游標(biāo)的方法或臨時表方法之前,應(yīng)先尋找基于集的解決方案來解決問題,基于集的方法通常更有效。
27、與臨時表一樣,游標(biāo)并不是不可使用。對小型數(shù)據(jù)集使用 FAST_FORWARD 游標(biāo)通常要優(yōu)于其他逐行處理方法,尤其是在必須引用幾個表才能獲得所需的數(shù)據(jù)時。在結(jié)果集中包括“合計”的例程通常要比使用游標(biāo)執(zhí)行的速度快。如果開發(fā)時 間允許,基于游標(biāo)的方法和基于集的方法都可以嘗試一下,看哪一種方法的效果更好。
28、在所有的存儲過程和觸發(fā)器的開始處設(shè)置 SET NOCOUNT ON ,在結(jié)束時設(shè)置 SET NOCOUNT OFF 。無需在執(zhí)行存儲過程和觸發(fā)器的每個語句后向客戶端發(fā)送 DONE_IN_PROC 消息。
29、盡量避免向客戶端返回大數(shù)據(jù)量,若數(shù)據(jù)量過大,應(yīng)該考慮相應(yīng)需求是否合理。
30、盡量避免大事務(wù)操作,提高系統(tǒng)并發(fā)能力。
以上為個人經(jīng)驗,希望能給大家一個參考,也希望大家多多支持腳本之家。如有錯誤或未考慮完全的地方,望不吝賜教。
您可能感興趣的文章:- python 實現(xiàn)mysql自動增刪分區(qū)的方法
- python操作mysql、excel、pdf的示例
- Python爬蟲爬取全球疫情數(shù)據(jù)并存儲到mysql數(shù)據(jù)庫的步驟
- Python爬取騰訊疫情實時數(shù)據(jù)并存儲到mysql數(shù)據(jù)庫的示例代碼
- MySQL和Python交互的示例