主頁 > 知識庫 > 詳解Python牛頓插值法

詳解Python牛頓插值法

熱門標簽:公司電話機器人 激戰(zhàn)2地圖標注 哈爾濱ai外呼系統(tǒng)定制 海南400電話如何申請 唐山智能外呼系統(tǒng)一般多少錢 白銀外呼系統(tǒng) 廣告地圖標注app 陜西金融外呼系統(tǒng) 騰訊外呼線路

一、牛頓多項式

拉格朗日多項式的公式不具備遞推性,每個多項式需要單獨構(gòu)造。但很多時候我們需要從若干個逼近多項式選擇一個。這個時候我們就需要一個具有遞推關(guān)系的方法來構(gòu)造——牛頓多項式

這里的的a0,a1…等可以通過逐一帶入點的值來求得。但是當項數(shù)多起來時,會發(fā)現(xiàn)式子變得很大,這個時候我們便要引入差商的概念(利用差分思想)具體見式子能更好理解


這里在編程實現(xiàn)中我們可以推出相應的差商推導方程

d(k,0)=y(k)
d(k,j)=(d(k,j-1)-d(k-1,j-1)) / (x(k)-x(k-j))

二、例題

【問題描述】考慮[0,3]內(nèi)的函數(shù)y=f(x)=cos(x)。利用多個(最多為6個)節(jié)點構(gòu)造牛頓插值多項式。
【輸入形式】在屏幕上依次輸入在區(qū)間[0,3]內(nèi)的一個值x*,構(gòu)造插值多項式后求其P(x*)值,和多個節(jié)點的x坐標。
【輸出形式】輸出牛頓插值多項式系數(shù)向量,差商矩陣,P(x*)值(保留6位有效數(shù)字),和與真實值的絕對誤差(使用科學計數(shù)法,保留小數(shù)點后6位有數(shù)字)。
【樣例1輸入】
0.8
0 0.5 1
【樣例1輸出】
-0.429726
-0.0299721
1
1 0 0
0.877583 -0.244835 0
0.540302 -0.674561 -0.429726
0.700998
4.291237e-03
【樣例1說明】
輸入:x為0.8,3個節(jié)點為(k, cos(k)),其中k = 0, 0.5, 1。
輸出:
牛頓插值多項式系數(shù)向量,表示P2(x)=-0.429726x^2 - 0.0299721x + 1;
3行3列的差商矩陣;
當x
為0.8時,P2(0.8)值為0.700998
與真實值的絕對誤差為:4.291237*10^(-3)
【評分標準】根據(jù)輸入得到的輸出準確

三、ACcode:

C++(后面還有python代碼)

/*
 * @Author: csc
 * @Date: 2021-04-30 08:52:45
 * @LastEditTime: 2021-04-30 11:57:46
 * @LastEditors: Please set LastEditors
 * @Description: In User Settings Edit
 * @FilePath: \code_formal\course\cal\newton_quo.cpp
 */
#include bits/stdc++.h>
#define pr printf
#define sc scanf
#define for0(i, n) for (i = 0; i  n; i++)
#define for1n(i, n) for (i = 1; i = n; i++)
#define forab(i, a, b) for (i = a; i = b; i++)
#define forba(i, a, b) for (i = b; i >= a; i--)
#define pb push_back
#define eb emplace_back
#define fi first
#define se second
#define int long long
#define pii pairint, int>
#define vi vectorint>
#define vii vectorvectorint>>
#define vt3 vectortupleint, int, int>>
#define mem(ara, n) memset(ara, n, sizeof(ara))
#define memb(ara) memset(ara, false, sizeof(ara))
#define all(x) (x).begin(), (x).end()
#define sq(x) ((x) * (x))
#define sz(x) x.size()
const int N = 2e5 + 100;
const int mod = 1e9 + 7;
namespace often
{
    inline void input(int res)
    {
        char c = getchar();
        res = 0;
        int f = 1;
        while (!isdigit(c))
        {
            f ^= c == '-';
            c = getchar();
        }
        while (isdigit(c))
        {
            res = (res  3) + (res  1) + (c ^ 48);
            c = getchar();
        }
        res = f ? res : -res;
    }
    inline int qpow(int a, int b)
    {
        int ans = 1, base = a;
        while (b)
        {
            if (b  1)
                ans = (ans * base % mod + mod) % mod;
            base = (base * base % mod + mod) % mod;
            b >>= 1;
        }
        return ans;
    }
    int fact(int n)
    {
        int res = 1;
        for (int i = 1; i = n; i++)
            res = res * 1ll * i % mod;
        return res;
    }
    int C(int n, int k)
    {
        return fact(n) * 1ll * qpow(fact(k), mod - 2) % mod * 1ll * qpow(fact(n - k), mod - 2) % mod;
    }
    int exgcd(int a, int b, int x, int y)
    {
        if (b == 0)
        {
            x = 1, y = 0;
            return a;
        }
        int res = exgcd(b, a % b, x, y);
        int t = y;
        y = x - (a / b) * y;
        x = t;
        return res;
    }
    int invmod(int a, int mod)
    {
        int x, y;
        exgcd(a, mod, x, y);
        x %= mod;
        if (x  0)
            x += mod;
        return x;
    }
}
using namespace often;
using namespace std;

int n;

signed main()
{
    auto polymul = [](vectordouble> v, double er) {
        v.emplace_back(0);
        vectordouble> _ = v;
        int m = sz(v);
        for (int i = 1; i  m; i++)
            v[i] += er * _[i - 1];
    };
    auto polyval = [](vectordouble> const c, double const _x) -> double {
        double res = 0.0;
        int m = sz(c);
        for (int ii = 0; ii  m; ii++)
            res += c[ii] * pow(_x, (double)(m - ii - 1));
        return res;
    };

    int __ = 1;
    //input(_);
    while (__--)
    {
        double _x, temp;
        cin >> _x;
        vectordouble> x, y;
        while (cin >> temp)
            x.emplace_back(temp), y.emplace_back(cos(temp));
        n = x.size();
        vectorvectordouble>> a(n, vectordouble>(n));
        int i, j;
        for0(i, n) a[i][0] = y[i];
        forab(j, 1, n - 1) forab(i, j, n - 1) a[i][j] = (a[i][j - 1] - a[i - 1][j - 1]) / (x[i] - x[i - j]);
        vectordouble> v;
        v.emplace_back(a[n - 1][n - 1]);
        forba(i, 0, n - 2)
        {
            polymul(v, -x[i]);
            int l = sz(v);
            v[l - 1] += a[i][i];
        }

        for0(i, n)
            pr("%g\n", v[i]);
        for0(i, n)
        {
            for0(j, n)
                pr("%g ", a[i][j]);
            puts("");
        }
        double _y =  polyval(v, _x);
        pr("%g\n", _y);
        pr("%.6e",fabs(_y-cos(_x)));
    }

    return 0;
}

python代碼

'''
Author: csc
Date: 2021-04-29 23:00:57
LastEditTime: 2021-04-30 09:58:07
LastEditors: Please set LastEditors
Description: In User Settings Edit
FilePath: \code_py\newton_.py
'''
import numpy as np


def difference_quotient(x, y):
    n = len(x)
    a = np.zeros([n, n], dtype=float)
    for i in range(n):
        a[i][0] = y[i]
    for j in range(1, n):
        for i in range(j, n):
            a[i][j] = (a[i][j-1]-a[i-1][j-1])/(x[i]-x[i-j])
    return a


def newton(x, y, _x):
    a = difference_quotient(x, y)
    n = len(x)
    s = a[n-1][n-1]
    j = n-2
    while j >= 0:
        s = np.polyadd(np.polymul(s, np.poly1d(
            [x[j]], True)), np.poly1d([a[j][j]]))
        j -= 1
    for i in range(n):
        print('%g' % s[n-1-i])
    for i in range(n):
        for j in range(n):
            print('%g' % a[i][j], end=' ')
        print()
    _y = np.polyval(s, _x)
    print('%g' % _y)
    # re_err
    real_y = np.cos(_x)
    err = abs(_y-real_y)
    print('%.6e' % err)


def main():
    _x = float(input())
    x = list(map(float, input().split()))
    y = np.cos(x)
    newton(x, y, _x)


if __name__ == '__main__':
    main()

到此這篇關(guān)于詳解Python牛頓插值法的文章就介紹到這了,更多相關(guān)Python牛頓插值法內(nèi)容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • python排序算法的簡單實現(xiàn)方法
  • Python實現(xiàn)K-means聚類算法并可視化生成動圖步驟詳解
  • 用Python給圖像算法做個簡單應用界面
  • python利用K-Means算法實現(xiàn)對數(shù)據(jù)的聚類案例詳解
  • Python機器學習之Kmeans基礎(chǔ)算法
  • Python自然語言處理之切分算法詳解
  • python入門之算法學習
  • python實現(xiàn)線性回歸算法
  • 盤點Python加密解密模塊hashlib的7種加密算法(推薦)
  • Python實現(xiàn)七大查找算法的示例代碼

標簽:常德 黔西 鷹潭 四川 益陽 惠州 上海 黑龍江

巨人網(wǎng)絡通訊聲明:本文標題《詳解Python牛頓插值法》,本文關(guān)鍵詞  詳解,Python,牛頓,插值,法,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問題,煩請?zhí)峁┫嚓P(guān)信息告之我們,我們將及時溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡,涉及言論、版權(quán)與本站無關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《詳解Python牛頓插值法》相關(guān)的同類信息!
  • 本頁收集關(guān)于詳解Python牛頓插值法的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章