主頁(yè) > 知識(shí)庫(kù) > 基于BCEWithLogitsLoss樣本不均衡的處理方案

基于BCEWithLogitsLoss樣本不均衡的處理方案

熱門(mén)標(biāo)簽:廣告地圖標(biāo)注app 白銀外呼系統(tǒng) 海南400電話如何申請(qǐng) 哈爾濱ai外呼系統(tǒng)定制 騰訊外呼線路 公司電話機(jī)器人 陜西金融外呼系統(tǒng) 唐山智能外呼系統(tǒng)一般多少錢(qián) 激戰(zhàn)2地圖標(biāo)注

最近在做deepfake檢測(cè)任務(wù)(可以將其視為二分類(lèi)問(wèn)題,label為1和0),遇到了正負(fù)樣本不均衡的問(wèn)題,正樣本數(shù)目是負(fù)樣本的5倍,這樣會(huì)導(dǎo)致FP率較高。

嘗試將正樣本的loss權(quán)重增高,看BCEWithLogitsLoss的源碼

Examples::
 
    >>> target = torch.ones([10, 64], dtype=torch.float32)  # 64 classes, batch size = 10
    >>> output = torch.full([10, 64], 0.999)  # A prediction (logit)
    >>> pos_weight = torch.ones([64])  # All weights are equal to 1
    >>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
    >>> criterion(output, target)  # -log(sigmoid(0.999))
    tensor(0.3135)
 
Args:
    weight (Tensor, optional): a manual rescaling weight given to the loss
        of each batch element. If given, has to be a Tensor of size `nbatch`.
    size_average (bool, optional): Deprecated (see :attr:`reduction`). By default,
        the losses are averaged over each loss element in the batch. Note that for
        some losses, there are multiple elements per sample. If the field :attr:`size_average`
        is set to ``False``, the losses are instead summed for each minibatch. Ignored
        when reduce is ``False``. Default: ``True``
    reduce (bool, optional): Deprecated (see :attr:`reduction`). By default, the
        losses are averaged or summed over observations for each minibatch depending
        on :attr:`size_average`. When :attr:`reduce` is ``False``, returns a loss per
        batch element instead and ignores :attr:`size_average`. Default: ``True``
    reduction (string, optional): Specifies the reduction to apply to the output:
        ``'none'`` | ``'mean'`` | ``'sum'``. ``'none'``: no reduction will be applied,
        ``'mean'``: the sum of the output will be divided by the number of
        elements in the output, ``'sum'``: the output will be summed. Note: :attr:`size_average`
        and :attr:`reduce` are in the process of being deprecated, and in the meantime,
        specifying either of those two args will override :attr:`reduction`. Default: ``'mean'``
    pos_weight (Tensor, optional): a weight of positive examples.
            Must be a vector with length equal to the number of classes.

對(duì)其中的參數(shù)pos_weight的使用存在疑惑,BCEloss里的例子pos_weight = torch.ones([64]) # All weights are equal to 1,不懂為什么會(huì)有64個(gè)class,因?yàn)锽CEloss是針對(duì)二分類(lèi)問(wèn)題的loss,后經(jīng)過(guò)檢索,得知還有多標(biāo)簽分類(lèi),

多標(biāo)簽分類(lèi)就是多個(gè)標(biāo)簽,每個(gè)標(biāo)簽有兩個(gè)label(0和1),這類(lèi)任務(wù)同樣可以使用BCEloss。

現(xiàn)在講一下BCEWithLogitsLoss里的pos_weight使用方法

比如我們有正負(fù)兩類(lèi)樣本,正樣本數(shù)量為100個(gè),負(fù)樣本為400個(gè),我們想要對(duì)正負(fù)樣本的loss進(jìn)行加權(quán)處理,將正樣本的loss權(quán)重放大4倍,通過(guò)這樣的方式緩解樣本不均衡問(wèn)題。

criterion = nn.BCEWithLogitsLoss(pos_weight=torch.tensor([4]))
 
# pos_weight (Tensor, optional): a weight of positive examples.
#            Must be a vector with length equal to the number of classes.

pos_weight里是一個(gè)tensor列表,需要和標(biāo)簽個(gè)數(shù)相同,比如我們現(xiàn)在是二分類(lèi),只需要將正樣本loss的權(quán)重寫(xiě)上即可。

如果是多標(biāo)簽分類(lèi),有64個(gè)標(biāo)簽,則

Examples::
 
    >>> target = torch.ones([10, 64], dtype=torch.float32)  # 64 classes, batch size = 10
    >>> output = torch.full([10, 64], 0.999)  # A prediction (logit)
    >>> pos_weight = torch.ones([64])  # All weights are equal to 1
    >>> criterion = torch.nn.BCEWithLogitsLoss(pos_weight=pos_weight)
    >>> criterion(output, target)  # -log(sigmoid(0.999))
    tensor(0.3135)

補(bǔ)充:Pytorch —— BCEWithLogitsLoss()的一些問(wèn)題

一、等價(jià)表達(dá)

1、pytorch:

torch.sigmoid() + torch.nn.BCELoss()

2、自己編寫(xiě)

def ce_loss(y_pred, y_train, alpha=1):
    
    p = torch.sigmoid(y_pred)
    # p = torch.clamp(p, min=1e-9, max=0.99)  
    loss = torch.sum(- alpha * torch.log(p) * y_train \

           - torch.log(1 - p) * (1 - y_train))/len(y_train)
    return loss~

3、驗(yàn)證

import torch
import torch.nn as nn
torch.cuda.manual_seed(300)       # 為當(dāng)前GPU設(shè)置隨機(jī)種子
torch.manual_seed(300)            # 為CPU設(shè)置隨機(jī)種子
def ce_loss(y_pred, y_train, alpha=1):
   # 計(jì)算loss
   p = torch.sigmoid(y_pred)
   # p = torch.clamp(p, min=1e-9, max=0.99)
   loss = torch.sum(- alpha * torch.log(p) * y_train \

          - torch.log(1 - p) * (1 - y_train))/len(y_train)
   return loss
py_lossFun = nn.BCEWithLogitsLoss()
input = torch.randn((10000,1), requires_grad=True)
target = torch.ones((10000,1))
target.requires_grad_(True)
py_loss = py_lossFun(input, target)
py_loss.backward()
print("*********BCEWithLogitsLoss***********")
print("loss: ")
print(py_loss.item())
print("梯度: ")
print(input.grad)
input = input.detach()
input.requires_grad_(True)
self_loss = ce_loss(input, target)
self_loss.backward()
print("*********SelfCELoss***********")
print("loss: ")
print(self_loss.item())
print("梯度: ")
print(input.grad)

測(cè)試結(jié)果:

– 由上結(jié)果可知,我編寫(xiě)的loss和pytorch中提供的j基本一致。

– 但是僅僅這樣就可以了嗎?NO! 下面介紹BCEWithLogitsLoss()的強(qiáng)大之處:

– BCEWithLogitsLoss()具有很好的對(duì)nan的處理能力,對(duì)于我寫(xiě)的代碼(四層神經(jīng)網(wǎng)絡(luò),層之間的激活函數(shù)采用的是ReLU,輸出層激活函數(shù)采用sigmoid(),由于數(shù)據(jù)處理的問(wèn)題,所以會(huì)導(dǎo)致我們編寫(xiě)的CE的loss出現(xiàn)nan:原因如下:

–首先神經(jīng)網(wǎng)絡(luò)輸出的pre_target較大,就會(huì)導(dǎo)致sigmoid之后的p為1,則torch.log(1 - p)為nan;

– 使用clamp(函數(shù)雖然會(huì)解除這個(gè)nan,但是由于在迭代過(guò)程中,網(wǎng)絡(luò)輸出可能越來(lái)越大(層之間使用的是ReLU),則導(dǎo)致我們寫(xiě)的loss陷入到某一個(gè)數(shù)值而無(wú)法進(jìn)行優(yōu)化。但是BCEWithLogitsLoss()對(duì)這種情況下出現(xiàn)的nan有很好的處理,從而得到更好的結(jié)果。

– 我此實(shí)驗(yàn)的目的是為了比較CE和FL的區(qū)別,自己編寫(xiě)FL,則必須也要自己編寫(xiě)CE,不能使用BCEWithLogitsLoss()。

二、使用場(chǎng)景

二分類(lèi) + sigmoid()

使用sigmoid作為輸出層非線性表達(dá)的分類(lèi)問(wèn)題(雖然可以處理多分類(lèi)問(wèn)題,但是一般用于二分類(lèi),并且最后一層只放一個(gè)節(jié)點(diǎn))

三、注意事項(xiàng)

輸入格式

要求輸入的input和target均為float類(lèi)型

以上為個(gè)人經(jīng)驗(yàn),希望能給大家一個(gè)參考,也希望大家多多支持腳本之家。

您可能感興趣的文章:
  • Pytorch BCELoss和BCEWithLogitsLoss的使用
  • Pytorch 的損失函數(shù)Loss function使用詳解
  • Pytorch訓(xùn)練網(wǎng)絡(luò)過(guò)程中l(wèi)oss突然變?yōu)?的解決方案
  • pytorch MSELoss計(jì)算平均的實(shí)現(xiàn)方法
  • pytorch loss反向傳播出錯(cuò)的解決方案

標(biāo)簽:常德 四川 益陽(yáng) 惠州 黑龍江 上海 黔西 鷹潭

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《基于BCEWithLogitsLoss樣本不均衡的處理方案》,本文關(guān)鍵詞  基于,BCEWithLogitsLoss,樣本,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《基于BCEWithLogitsLoss樣本不均衡的處理方案》相關(guān)的同類(lèi)信息!
  • 本頁(yè)收集關(guān)于基于BCEWithLogitsLoss樣本不均衡的處理方案的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章