import numpy as np
import cv2
class Stitcher:
#拼接函數(shù)
def stitch(self, images, ratio=0.75, reprojThresh=4.0,showMatches=False):
#獲取輸入圖片
(imageB, imageA) = images
#檢測(cè)A、B圖片的SIFT關(guān)鍵特征點(diǎn),并計(jì)算特征描述子
(kpsA, featuresA) = self.detectAndDescribe(imageA)
(kpsB, featuresB) = self.detectAndDescribe(imageB)
# 匹配兩張圖片的所有特征點(diǎn),返回匹配結(jié)果
M = self.matchKeypoints(kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh)
# 如果返回結(jié)果為空,沒(méi)有匹配成功的特征點(diǎn),退出算法
if M is None:
return None
# 否則,提取匹配結(jié)果
# H是3x3視角變換矩陣
(matches, H, status) = M
# 將圖片A進(jìn)行視角變換,result是變換后圖片
result = cv2.warpPerspective(imageA, H, (imageA.shape[1] + imageB.shape[1], imageA.shape[0]))
self.cv_show('result', result)
# 將圖片B傳入result圖片最左端
result[0:imageB.shape[0], 0:imageB.shape[1]] = imageB
self.cv_show('result', result)
# 檢測(cè)是否需要顯示圖片匹配
if showMatches:
# 生成匹配圖片
vis = self.drawMatches(imageA, imageB, kpsA, kpsB, matches, status)
# 返回結(jié)果
return (result, vis)
# 返回匹配結(jié)果
return result
def cv_show(self,name,img):
cv2.imshow(name, img)
cv2.waitKey(0)
cv2.destroyAllWindows()
def detectAndDescribe(self, image):
# 將彩色圖片轉(zhuǎn)換成灰度圖
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
# 建立SIFT生成器
descriptor = cv2.xfeatures2d.SIFT_create()
# 檢測(cè)SIFT特征點(diǎn),并計(jì)算描述子
(kps, features) = descriptor.detectAndCompute(image, None)
# 將結(jié)果轉(zhuǎn)換成NumPy數(shù)組
kps = np.float32([kp.pt for kp in kps])
# 返回特征點(diǎn)集,及對(duì)應(yīng)的描述特征
return (kps, features)
def matchKeypoints(self, kpsA, kpsB, featuresA, featuresB, ratio, reprojThresh):
# 建立暴力匹配器
matcher = cv2.BFMatcher()
# 使用KNN檢測(cè)來(lái)自A、B圖的SIFT特征匹配對(duì),K=2
rawMatches = matcher.knnMatch(featuresA, featuresB, 2)
matches = []
for m in rawMatches:
# 當(dāng)最近距離跟次近距離的比值小于ratio值時(shí),保留此匹配對(duì)
if len(m) == 2 and m[0].distance m[1].distance * ratio:
# 存儲(chǔ)兩個(gè)點(diǎn)在featuresA, featuresB中的索引值
matches.append((m[0].trainIdx, m[0].queryIdx))
# 當(dāng)篩選后的匹配對(duì)大于4時(shí),計(jì)算視角變換矩陣
if len(matches) > 4:
# 獲取匹配對(duì)的點(diǎn)坐標(biāo)
ptsA = np.float32([kpsA[i] for (_, i) in matches])
ptsB = np.float32([kpsB[i] for (i, _) in matches])
# 計(jì)算視角變換矩陣
(H, status) = cv2.findHomography(ptsA, ptsB, cv2.RANSAC, reprojThresh)
# 返回結(jié)果
return (matches, H, status)
# 如果匹配對(duì)小于4時(shí),返回None
return None
def drawMatches(self, imageA, imageB, kpsA, kpsB, matches, status):
# 初始化可視化圖片,將A、B圖左右連接到一起
(hA, wA) = imageA.shape[:2]
(hB, wB) = imageB.shape[:2]
vis = np.zeros((max(hA, hB), wA + wB, 3), dtype="uint8")
vis[0:hA, 0:wA] = imageA
vis[0:hB, wA:] = imageB
# 聯(lián)合遍歷,畫(huà)出匹配對(duì)
for ((trainIdx, queryIdx), s) in zip(matches, status):
# 當(dāng)點(diǎn)對(duì)匹配成功時(shí),畫(huà)到可視化圖上
if s == 1:
# 畫(huà)出匹配對(duì)
ptA = (int(kpsA[queryIdx][0]), int(kpsA[queryIdx][1]))
ptB = (int(kpsB[trainIdx][0]) + wA, int(kpsB[trainIdx][1]))
cv2.line(vis, ptA, ptB, (0, 255, 0), 1)
# 返回可視化結(jié)果
return vis
到此這篇關(guān)于OpenCV全景圖像拼接的實(shí)現(xiàn)示例的文章就介紹到這了,更多相關(guān)OpenCV 圖像拼接內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!