主頁(yè) > 知識(shí)庫(kù) > Python實(shí)現(xiàn)最短路徑問(wèn)題的方法

Python實(shí)現(xiàn)最短路徑問(wèn)題的方法

熱門標(biāo)簽:孝感營(yíng)銷電話機(jī)器人效果怎么樣 商家地圖標(biāo)注海報(bào) 地圖標(biāo)注自己和別人標(biāo)注區(qū)別 ai電銷機(jī)器人的優(yōu)勢(shì) 海外網(wǎng)吧地圖標(biāo)注注冊(cè) 騰訊地圖標(biāo)注沒(méi)法顯示 南陽(yáng)打電話機(jī)器人 打電話機(jī)器人營(yíng)銷 聊城語(yǔ)音外呼系統(tǒng)

一、創(chuàng)建圖

在開(kāi)始之前,我們先創(chuàng)建一個(gè)圖,使用鄰接矩陣表示有向網(wǎng):

class Graph(object):
    """
    以鄰接矩陣為存儲(chǔ)結(jié)構(gòu)創(chuàng)建有向網(wǎng)
    """
    def __init__(self, kind):
        # 圖的類型: 無(wú)向圖, 有向圖, 無(wú)向網(wǎng), 有向網(wǎng)
        # kind: Undigraph, Digraph, Undinetwork, Dinetwork,
        self.kind = kind
        # 頂點(diǎn)表
        self.vertexs = []
        # 邊表, 即鄰接矩陣, 是個(gè)二維的
        self.arcs = []
        # 當(dāng)前頂點(diǎn)數(shù)
        self.vexnum = 0
        # 當(dāng)前邊(弧)數(shù)
        self.arcnum = 0

    def CreateGraph(self, vertex_list, edge_list):
        """
        創(chuàng)建圖
        :param vertex_list: 頂點(diǎn)列表
        :param edge_list: 邊列表
        :return:
        """
        self.vexnum = len(vertex_list)
        self.arcnum = len(edge_list)
        for vertex in vertex_list:
            vertex = Vertex(vertex)
            # 頂點(diǎn)列表
            self.vertexs.append(vertex)
            # 鄰接矩陣, 初始化為無(wú)窮
            self.arcs.append([float('inf')] * self.vexnum)
        for edge in edge_list:
            ivertex = self.LocateVertex(edge[0])
            jvertex = self.LocateVertex(edge[1])
            weight = edge[2]
            self.InsertArc(ivertex, jvertex, weight)

    def LocateVertex(self, vertex):
        """
        定位頂點(diǎn)在鄰接表中的位置
        :param vertex:
        :return:
        """
        index = 0
        while index  self.vexnum:
            if self.vertexs[index].data == vertex:
                return index
            else:
                index += 1

    def InsertArc(self, ivertex, jvertex, weight):
        """
        創(chuàng)建鄰接矩陣
        :param ivertex:
        :param jvertex:
        :param weight:
        :return:
        """
        if self.kind == 'Dinetwork':
            self.arcs[ivertex][jvertex] = weight

  有關(guān)鄰接矩陣中頂點(diǎn)結(jié)點(diǎn)Vertex()的定義可以參考這篇博客,這里就不在貼出相應(yīng)的代碼了。

二、問(wèn)題來(lái)源

  

假如我從城市 A A A出發(fā)坐火車去其他城市旅游,那么如何規(guī)劃路線使所花費(fèi)的車票錢最少呢?若將上述圖中的城市看成有向網(wǎng)中的頂點(diǎn),并將兩城市之間所需要的車票錢看做對(duì)應(yīng)弧的權(quán)值,那么這一問(wèn)題的本質(zhì)就是求兩個(gè)頂點(diǎn)之間權(quán)值最小的路徑,簡(jiǎn)稱最短路徑 ( S h o r t e s t (Shortest (Shortest P a t h ) Path) Path)。

三、Dijkstra算法

D i j k s t r a Dijkstra Dijkstra算法,中文名叫迪杰斯特拉算法,它常用于求解源點(diǎn)到其余頂點(diǎn)的最短路徑。

假設(shè) G = { V , { A } } G=\{V, \{A\}\} G={V,{A}}是含有 n n n個(gè)頂點(diǎn)的有向網(wǎng),以該圖中的頂點(diǎn) v v v為源點(diǎn),使用 D i j k s t r a

Dijkstra Dijkstra算法求頂點(diǎn) v v v到圖中其余各頂點(diǎn)的最短路徑的基本思路如下:
(1) 使用集合 S S S記錄已求得最短路徑的終點(diǎn),初始時(shí) S = { v } S=\{v\} S={v};
(2) 選擇一條長(zhǎng)度最短的路徑,該路徑的終點(diǎn) w ∈ V − S w\in V-S w∈V−S,將 w w w并入 S S S,并將該最短路徑的長(zhǎng)度記為 D w D_w Dw​;
(3) 對(duì)于 V − S V-S V−S中任一頂點(diǎn) s s s,將源點(diǎn)到頂點(diǎn) s s s的最短路徑長(zhǎng)度記為 D s D_s Ds​,并將頂點(diǎn) w w w到頂點(diǎn) s s s的弧的權(quán)值記為 D w s D_{ws} Dws​,若 D w + D w s D s D_w+D_{ws}D_s Dw​+Dws​Ds​,則將源點(diǎn)到頂點(diǎn) s s s的最短路徑的長(zhǎng)度修改為 D w + D w s D_w+D_{ws} Dw​+Dws​;
(4) 重復(fù)執(zhí)行上述操作,直到 S = V S=V S=V。

D i j k s t r a Dijkstra Dijkstra算法有些 P r i m Prim Prim算法的影子,這里使用一個(gè)輔助列表Dist,用來(lái)存儲(chǔ)源點(diǎn)到每一個(gè)終點(diǎn)的最短路徑長(zhǎng)度,列表Path來(lái)存儲(chǔ)每一條最短路徑中倒數(shù)第二個(gè)頂點(diǎn)的下標(biāo)(弧尾下標(biāo)),除此之外還需要一個(gè)列表flag來(lái)記錄頂點(diǎn)是否已求得最短路徑。下面結(jié)合著 D i j k s t r a Dijkstra Dijkstra算法來(lái)分析一下上面的那個(gè)有向網(wǎng):

(1) 這里要做的就是更新列表Dist和列表Path,假如以頂點(diǎn) A A A為起始點(diǎn),先將它加入 S S S中,然后尋找以頂點(diǎn) A A A為弧尾的最短路徑,這里找到了頂點(diǎn) B B B,然后繼續(xù)找下一個(gè)頂點(diǎn)。這個(gè)時(shí)候就要做一個(gè)判斷了,即 D w + D w s D s D_w+D_{ws}D_s Dw​+Dws​Ds​是否成立,這里的頂點(diǎn) s s s有兩種選擇,要么是頂點(diǎn) C C C,要么是頂點(diǎn) D D D,因?yàn)檫@兩個(gè)頂點(diǎn)都是以頂點(diǎn) w w w(即頂點(diǎn) B B B)為弧尾,按照順序,這個(gè)時(shí)候先選擇了頂點(diǎn) C C C,經(jīng)判斷: D A B + D B C D A C D_{AB}+D_{BC}D_{AC} DAB​+DBC​DAC​(即 4 + 3 = 7 8 4+3=78 4+3=78)成立,然后更新源點(diǎn)到頂點(diǎn) s s s(即頂點(diǎn) C C C)的距離為7。這個(gè)時(shí)候頂點(diǎn) s s s又選擇了頂點(diǎn) D D D,經(jīng)判斷: D A B + D B D D A D D_{AB}+D_{BD}D_{AD} DAB​+DBD​DAD​(即 4 + 8 = 12 ∞ 4+8=12\infty 4+8=12∞)成立,然后更新源點(diǎn)到頂點(diǎn) s s s(即頂點(diǎn) D D D)的距離為12。

(2) 然后尋找以頂點(diǎn) C C C為弧尾的最短路徑,這里找到了頂點(diǎn) E E E,然后做一個(gè)路徑長(zhǎng)度判斷,經(jīng)判斷: D A C + D C E D A E D_{AC}+D_{CE}D_{AE} DAC​+DCE​DAE​(即 7 + 1 = 8 ∞ 7+1=8\infty 7+1=8∞)成立,然后更新源點(diǎn)到頂點(diǎn) s s s(即頂點(diǎn) E E E)的距離為8,然后又找到了頂點(diǎn) F F F,然后做一個(gè)路徑長(zhǎng)度判斷,經(jīng)判斷: D A C + D C F D A F D_{AC}+D_{CF}D_{AF} DAC​+DCF​DAF​(即 7 + 6 = 13 ∞ 7+6=13\infty 7+6=13∞)成立,然后更新源點(diǎn)到頂點(diǎn) s s s(即頂點(diǎn) F F F)的距離為13。

(3) 直至計(jì)算出所有源點(diǎn)到其余頂點(diǎn)的距離。

D i j k s t r a Dijkstra Dijkstra算法代碼實(shí)現(xiàn)如下:

 def Dijkstra(self, Vertex):
        """
        Dijkstra算法, 計(jì)算源點(diǎn)Vertex到其余各頂點(diǎn)的最短距離
        :param Vertex:
        :return:
        """
        # 源點(diǎn)到每一個(gè)終點(diǎn)的最短路徑長(zhǎng)度
        Dist = []
        # 每一條最短路徑中倒數(shù)第二個(gè)頂點(diǎn)的下標(biāo)(弧尾下標(biāo))
        Path = []
        # 記錄頂點(diǎn)是否已求得最短路徑
        flag = [False] * self.vexnum

        index = 0
        while index  self.vexnum:
            Dist.append(self.arcs[Vertex][index])
            if self.arcs[Vertex][index]  float('inf'):
                # 存放弧尾下標(biāo)
                Path.append(Vertex)
            else:
                Path.append(-1)
            index += 1

        # 以頂點(diǎn)Vertex為源點(diǎn)
        Dist[Vertex] = 0
        Path[Vertex] = 0
        flag[Vertex] = True

        index = 1
        while index  self.vexnum:
            minDist = float('inf')
            # 尋找源點(diǎn)到下一個(gè)頂點(diǎn)wVertex的最短路徑
            for i in range(self.vexnum):
                if not flag[i] and Dist[i]  minDist:
                    wVertex = i
                    minDist = Dist[i]
            flag[wVertex] = True
            sVertex = 0
            minDist = float('inf')
            # 更新源點(diǎn)到終點(diǎn)sVertex的最短路徑
            while sVertex  self.vexnum:
                if not flag[sVertex]:
                    if self.arcs[wVertex][sVertex]  minDist and \

                            Dist[wVertex] + self.arcs[wVertex][sVertex]  Dist[sVertex]:
                        # 距離更新
                        Dist[sVertex] = Dist[wVertex] + self.arcs[wVertex][sVertex]
                        Path[sVertex] = wVertex
                sVertex += 1
            index += 1
        # 輸出信息
        self.ShortestPathDijkstra(Vertex, Dist, Path)

    def ShortestPathDijkstra(self, Vertex, Dist, Path):
        """
        輸出從頂點(diǎn)Vertex到其余頂點(diǎn)的最短路徑
        :param Vertex:
        :param Dist:
        :param Path:
        :return:
        """
        tPath = []
        index = 0
        while index  self.vexnum:
            # index是路徑終點(diǎn)
            if index != Vertex:
                print('頂點(diǎn)' + self.vertexs[Vertex].data + '到達(dá)頂點(diǎn)' + self.vertexs[index].data + '的路徑及長(zhǎng)度為:')
                # 從源點(diǎn)Vertex到終點(diǎn)index中間有可能經(jīng)過(guò)了多個(gè)頂點(diǎn)
                tPath.append(index)
                former = Path[index]
                while former != Vertex:
                    tPath.append(former)
                    former = Path[former]
                tPath.append(Vertex)
                while len(tPath) > 0:
                    print(self.vertexs[tPath.pop()].data, end='')
                print('\t\t%d' % Dist[index])
            index += 1

四、Floyd算法

F l o y d Floyd Floyd算法,中文名叫弗洛伊德算法,它常用于求解求解每一對(duì)頂點(diǎn)之間的最短路徑。

假設(shè) G = { V , { A } } G=\{V, \{A\}\} G={V,{A}}是含有 n n n個(gè)頂點(diǎn)的有向網(wǎng),使用 F l o y d Floyd Floyd算法求圖中每一對(duì)頂點(diǎn)間的最短路徑的基本思路如下:

(1) 對(duì)于圖 G G G中任意兩個(gè)頂點(diǎn) v v v和 w w w,將頂點(diǎn) v v v和頂點(diǎn) w w w的最短路徑的長(zhǎng)度記為 D v w D_{vw} Dvw​,并依次判斷其余各頂點(diǎn)是否為這兩個(gè)頂點(diǎn)間最短路徑上的頂點(diǎn)。對(duì)于除了頂點(diǎn) v v v和頂點(diǎn)頂點(diǎn) w w w的任意頂點(diǎn) u u u,將頂點(diǎn) v v v和頂點(diǎn) u u u的最短路徑的長(zhǎng)度記為 D v u D_{vu} Dvu​,并頂點(diǎn) u u u和頂點(diǎn) w w w的最短路徑的長(zhǎng)度記為 D u w D_{uw} Duw​,若 D v u + D u w D v w D_{vu}+D_{uw}D_{vw} Dvu​+Duw​Dvw​,則將 D v w D_{vw} Dvw​的值修改為 D v u + D u w D_{vu}+D_{uw} Dvu​+Duw​,即頂點(diǎn) v v v和頂點(diǎn) w w w的最短路徑經(jīng)過(guò)頂點(diǎn) u u u;

(2) 重復(fù)上述過(guò)程,直至圖中每一頂點(diǎn)間的最短路徑都被求出。

當(dāng)然了,也可以對(duì)每個(gè)頂點(diǎn)使用 D i j k s t r a Dijkstra Dijkstra算法來(lái)求得每對(duì)頂點(diǎn)的最短路徑。對(duì)于 F l o y d Floyd Floyd算法,這里使用一個(gè)輔助二維數(shù)組Dist,用來(lái)存儲(chǔ)源點(diǎn)到每一對(duì)頂點(diǎn)間的最短路徑長(zhǎng)度,二維數(shù)組Path來(lái)存儲(chǔ)每一條最短路徑中倒數(shù)第二個(gè)頂點(diǎn)的下標(biāo)(弧尾下標(biāo))。下面結(jié)合著 F l o y d Floyd Floyd算法來(lái)分析一下最上面的那個(gè)有向網(wǎng)(由于頂點(diǎn)對(duì)較多,這里選擇 A − I A-I A−I的最短路徑進(jìn)行說(shuō)明):

  

 F l o y d Floyd Floyd算法代碼實(shí)現(xiàn)如下:

 def Floyd(self):
        """
        Floyd算法, 計(jì)算每一對(duì)頂點(diǎn)間的最短距離
        :return:
        """
        Dist = [[0 for _ in range(self.vexnum)] for _ in range(self.vexnum)]
        Path = [[0 for _ in range(self.vexnum)] for _ in range(self.vexnum)]
        for row in range(self.vexnum):
            for column in range(self.vexnum):
                Dist[row][column] = self.arcs[row][column]
                if self.arcs[row][column]  float('inf') and row != column:
                    Path[row][column] = row
                else:
                    Path[row][column] = -1
        
        # 判斷圖中任意兩個(gè)頂點(diǎn)的最短路徑是否經(jīng)過(guò)了結(jié)點(diǎn)uVertex
        for uVertex in range(self.vexnum):
            for vVertex in range(self.vexnum):
                for wVertex in range(self.vexnum):
                    if vVertex != wVertex and \

                            Dist[vVertex][uVertex] + Dist[uVertex][wVertex]  Dist[vVertex][wVertex]:
                        Dist[vVertex][wVertex] = Dist[vVertex][uVertex] + Dist[uVertex][wVertex]
                        Path[vVertex][wVertex] = Path[uVertex][wVertex]
        # 輸出每一組頂點(diǎn)間的最短路徑
        self.ShortestPathFloyd(Dist, Path)

    def ShortestPathFloyd(self, Dist, Path):
        """
        輸出每一組頂點(diǎn)間的最短路徑
        :param Dist:
        :param Path:
        :return:
        """
        tPath = []
        for start in range(self.vexnum):
            for end in range(self.vexnum):
                if start != end and Dist[start][end]  float('inf'):
                    print('從頂點(diǎn)' + self.vertexs[start].data + '到頂點(diǎn)' + self.vertexs[end].data +
                          '的路徑及長(zhǎng)度為:')
                    tVertex = Path[start][end]
                    tPath.append(end)
                    while tVertex != -1 and tVertex != start:
                        tPath.append(tVertex)
                        tVertex = Path[start][tVertex]
                    tPath.append(start)
                    while len(tPath) > 0:
                        print(self.vertexs[tPath.pop()].data, end='')
                    print('\t\t%d' % Dist[start][end])

五、代碼測(cè)試

測(cè)試代碼如下:

if __name__ == '__main__':
    graph = Graph(kind='Dinetwork')
    graph.CreateGraph(vertex_list=['A', 'B', 'C', 'D', 'E', 'F', 'G', 'H', 'I'],
                      edge_list=[('A', 'B', 4), ('A', 'C', 8), ('B', 'C', 3), ('B', 'D', 8),
                                 ('C', 'E', 1), ('C', 'F', 6), ('D', 'G', 7), ('D', 'H', 4),
                                 ('E', 'D', 2), ('E', 'F', 6), ('F', 'H', 2), ('G', 'I', 9),
                                 ('H', 'G', 14), ('H', 'I', 10)])

    print('{:*^30}'.format('Dijkstra算法'))
    # 起始位置的index為0
    graph.Dijkstra(0)

    print('{:*^30}'.format('Floyd算法'))
    graph.Floyd()

測(cè)試結(jié)果如下:


這里只看了一條,就是從頂點(diǎn) A A A到頂點(diǎn) I I I的路徑,可以看到 D i j k s t r a Dijkstra Dijkstra算法和 F l o y d Floyd Floyd算法求得的最短路徑都是24。

到此這篇關(guān)于Python實(shí)現(xiàn)最短路徑問(wèn)題的方法的文章就介紹到這了,更多相關(guān)Python最短路徑內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • python3實(shí)現(xiàn)Dijkstra算法最短路徑的實(shí)現(xiàn)
  • python Dijkstra算法實(shí)現(xiàn)最短路徑問(wèn)題的方法
  • python實(shí)現(xiàn)Dijkstra算法的最短路徑問(wèn)題
  • Python使用Dijkstra算法實(shí)現(xiàn)求解圖中最短路徑距離問(wèn)題詳解
  • Python數(shù)據(jù)結(jié)構(gòu)與算法之圖的最短路徑(Dijkstra算法)完整實(shí)例
  • python編寫的最短路徑算法

標(biāo)簽:迪慶 牡丹江 南寧 六盤水 楊凌 聊城 揚(yáng)州 撫州

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《Python實(shí)現(xiàn)最短路徑問(wèn)題的方法》,本文關(guān)鍵詞  Python,實(shí)現(xiàn),最短,路徑,問(wèn),;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《Python實(shí)現(xiàn)最短路徑問(wèn)題的方法》相關(guān)的同類信息!
  • 本頁(yè)收集關(guān)于Python實(shí)現(xiàn)最短路徑問(wèn)題的方法的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章