主頁(yè) > 知識(shí)庫(kù) > python OpenCV實(shí)現(xiàn)答題卡識(shí)別判卷

python OpenCV實(shí)現(xiàn)答題卡識(shí)別判卷

熱門標(biāo)簽:大連crm外呼系統(tǒng) 梅州外呼業(yè)務(wù)系統(tǒng) 北京電信外呼系統(tǒng)靠譜嗎 高德地圖標(biāo)注是免費(fèi)的嗎 地圖標(biāo)注視頻廣告 無(wú)錫客服外呼系統(tǒng)一般多少錢 老人電話機(jī)器人 洪澤縣地圖標(biāo)注 百度地圖標(biāo)注位置怎么修改

本文實(shí)例為大家分享了python OpenCV實(shí)現(xiàn)答題卡識(shí)別判卷的具體代碼,供大家參考,具體內(nèi)容如下

完整代碼:

#導(dǎo)入工具包
import numpy as np
import argparse
import imutils
import cv2
 
# 設(shè)置參數(shù)
ap = argparse.ArgumentParser()
ap.add_argument("-i", "--image", default="./images/test_03.png",
 help="path to the input image")
args = vars(ap.parse_args())
 
# 正確答案
ANSWER_KEY = {0: 1, 1: 4, 2: 0, 3: 3, 4: 1}
 
def order_points(pts):
 # 一共4個(gè)坐標(biāo)點(diǎn)
 rect = np.zeros((4, 2), dtype = "float32")
 
 # 按順序找到對(duì)應(yīng)坐標(biāo)0123分別是 左上,右上,右下,左下
 # 計(jì)算左上,右下
 s = pts.sum(axis = 1)
 rect[0] = pts[np.argmin(s)]
 rect[2] = pts[np.argmax(s)]
 
 # 計(jì)算右上和左下
 diff = np.diff(pts, axis = 1)
 rect[1] = pts[np.argmin(diff)]
 rect[3] = pts[np.argmax(diff)]
 
 return rect
 
def four_point_transform(image, pts):
 # 獲取輸入坐標(biāo)點(diǎn)
 rect = order_points(pts)
 (tl, tr, br, bl) = rect
 
 # 計(jì)算輸入的w和h值
 widthA = np.sqrt(((br[0] - bl[0]) ** 2) + ((br[1] - bl[1]) ** 2))
 widthB = np.sqrt(((tr[0] - tl[0]) ** 2) + ((tr[1] - tl[1]) ** 2))
 maxWidth = max(int(widthA), int(widthB))
 
 heightA = np.sqrt(((tr[0] - br[0]) ** 2) + ((tr[1] - br[1]) ** 2))
 heightB = np.sqrt(((tl[0] - bl[0]) ** 2) + ((tl[1] - bl[1]) ** 2))
 maxHeight = max(int(heightA), int(heightB))
 
 # 變換后對(duì)應(yīng)坐標(biāo)位置
 dst = np.array([
  [0, 0],
  [maxWidth - 1, 0],
  [maxWidth - 1, maxHeight - 1],
  [0, maxHeight - 1]], dtype = "float32")
 
 # 計(jì)算變換矩陣
 M = cv2.getPerspectiveTransform(rect, dst)
 warped = cv2.warpPerspective(image, M, (maxWidth, maxHeight))
 
 # 返回變換后結(jié)果
 return warped
def sort_contours(cnts, method="left-to-right"):
    reverse = False
    i = 0
    if method == "right-to-left" or method == "bottom-to-top":
        reverse = True
    if method == "top-to-bottom" or method == "bottom-to-top":
        i = 1
    boundingBoxes = [cv2.boundingRect(c) for c in cnts]
    (cnts, boundingBoxes) = zip(*sorted(zip(cnts, boundingBoxes),
                                        key=lambda b: b[1][i], reverse=reverse))
    return cnts, boundingBoxes
def cv_show(name,img):
        cv2.imshow(name, img)
        cv2.waitKey(0)
        cv2.destroyAllWindows()  
 
# 預(yù)處理
image = cv2.imread(args["image"])
contours_img = image.copy()
gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)
blurred = cv2.GaussianBlur(gray, (5, 5), 0)
cv_show('blurred',blurred)
edged = cv2.Canny(blurred, 75, 200)
cv_show('edged',edged)
 
# 輪廓檢測(cè)
cnts = cv2.findContours(edged.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)[0]
cv2.drawContours(contours_img,cnts,-1,(0,0,255),3) 
cv_show('contours_img',contours_img)
docCnt = None
 
# 確保檢測(cè)到了
if len(cnts) > 0:
 # 根據(jù)輪廓大小進(jìn)行排序
 cnts = sorted(cnts, key=cv2.contourArea, reverse=True)
 
 # 遍歷每一個(gè)輪廓
 for c in cnts:
  # 近似
  peri = cv2.arcLength(c, True)
  approx = cv2.approxPolyDP(c, 0.02 * peri, True)
 
  # 準(zhǔn)備做透視變換
  if len(approx) == 4:
   docCnt = approx
   break
 
# 執(zhí)行透視變換
 
warped = four_point_transform(gray, docCnt.reshape(4, 2))
cv_show('warped',warped)
# Otsu's 閾值處理
thresh = cv2.threshold(warped, 0, 255,
 cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1] 
cv_show('thresh',thresh)
thresh_Contours = thresh.copy()
# 找到每一個(gè)圓圈輪廓
cnts = cv2.findContours(thresh.copy(), cv2.RETR_EXTERNAL,
 cv2.CHAIN_APPROX_SIMPLE)[0]
cv2.drawContours(thresh_Contours,cnts,-1,(0,0,255),3) 
cv_show('thresh_Contours',thresh_Contours)
questionCnts = []
 
# 遍歷
for c in cnts:
 # 計(jì)算比例和大小
 (x, y, w, h) = cv2.boundingRect(c)
 ar = w / float(h)
 
 # 根據(jù)實(shí)際情況指定標(biāo)準(zhǔn)
 if w >= 20 and h >= 20 and ar >= 0.9 and ar = 1.1:
  questionCnts.append(c)
 
# 按照從上到下進(jìn)行排序
questionCnts = sort_contours(questionCnts,
 method="top-to-bottom")[0]
correct = 0
 
# 每排有5個(gè)選項(xiàng)
for (q, i) in enumerate(np.arange(0, len(questionCnts), 5)):
 # 排序
 cnts = sort_contours(questionCnts[i:i + 5])[0]
 bubbled = None
 
 # 遍歷每一個(gè)結(jié)果
 for (j, c) in enumerate(cnts):
  # 使用mask來(lái)判斷結(jié)果
  mask = np.zeros(thresh.shape, dtype="uint8")
  cv2.drawContours(mask, [c], -1, 255, -1) #-1表示填充
  cv_show('mask',mask)
  # 通過(guò)計(jì)算非零點(diǎn)數(shù)量來(lái)算是否選擇這個(gè)答案
  mask = cv2.bitwise_and(thresh, thresh, mask=mask)
  total = cv2.countNonZero(mask)
 
  # 通過(guò)閾值判斷
  if bubbled is None or total > bubbled[0]:
   bubbled = (total, j)
 
 # 對(duì)比正確答案
 color = (0, 0, 255)
 k = ANSWER_KEY[q]
 
 # 判斷正確
 if k == bubbled[1]:
  color = (0, 255, 0)
  correct += 1
 
 # 繪圖
 cv2.drawContours(warped, [cnts[k]], -1, color, 3)
 
 
score = (correct / 5.0) * 100
print("[INFO] score: {:.2f}%".format(score))
cv2.putText(warped, "{:.2f}%".format(score), (10, 30),
 cv2.FONT_HERSHEY_SIMPLEX, 0.9, (0, 0, 255), 2)
cv2.imshow("Original", image)
cv2.imshow("Exam", warped)
cv2.waitKey(0)

test_03.png

運(yùn)行效果:

以上就是本文的全部?jī)?nèi)容,希望對(duì)大家的學(xué)習(xí)有所幫助,也希望大家多多支持腳本之家。

您可能感興趣的文章:
  • python實(shí)現(xiàn)百萬(wàn)答題自動(dòng)百度搜索答案
  • python實(shí)現(xiàn)用戶答題功能
  • 答題輔助python代碼實(shí)現(xiàn)
  • python3.5+tesseract+adb實(shí)現(xiàn)西瓜視頻或頭腦王者輔助答題
  • 從0到1使用python開(kāi)發(fā)一個(gè)半自動(dòng)答題小程序的實(shí)現(xiàn)
  • Python沖頂大會(huì) 快來(lái)答題!
  • Python答題卡識(shí)別并給出分?jǐn)?shù)的實(shí)現(xiàn)代碼
  • python利用opencv如何實(shí)現(xiàn)答題卡自動(dòng)判卷

標(biāo)簽:吉林 泉州 長(zhǎng)春 怒江 清遠(yuǎn) 岳陽(yáng) 安慶 洛陽(yáng)

巨人網(wǎng)絡(luò)通訊聲明:本文標(biāo)題《python OpenCV實(shí)現(xiàn)答題卡識(shí)別判卷》,本文關(guān)鍵詞  python,OpenCV,實(shí)現(xiàn),答題,卡,;如發(fā)現(xiàn)本文內(nèi)容存在版權(quán)問(wèn)題,煩請(qǐng)?zhí)峁┫嚓P(guān)信息告之我們,我們將及時(shí)溝通與處理。本站內(nèi)容系統(tǒng)采集于網(wǎng)絡(luò),涉及言論、版權(quán)與本站無(wú)關(guān)。
  • 相關(guān)文章
  • 下面列出與本文章《python OpenCV實(shí)現(xiàn)答題卡識(shí)別判卷》相關(guān)的同類信息!
  • 本頁(yè)收集關(guān)于python OpenCV實(shí)現(xiàn)答題卡識(shí)別判卷的相關(guān)信息資訊供網(wǎng)民參考!
  • 推薦文章