import cx_Oracle
import xlrd
import xlwt
import matplotlib.pyplot as plt
import numpy as np
from matplotlib.ticker import FuncFormatter
plt.rcParams['font.sans-serif']=['SimHei']
plt.rcParams['axes.unicode_minus']=False
#設(shè)置坐標(biāo)軸數(shù)值以百分比(%)顯示函數(shù)
def to_percent(temp, position):
return '%1.0f'%(1*temp) + '%'
#字體設(shè)置
font2 = {'family' : 'Times New Roman',
'weight' : 'normal',
'size' : 25,
}
conn=cx_Oracle.connect('用戶名/密碼@IP:端口/數(shù)據(jù)庫(kù)')
c=conn.cursor()
#sql查詢語(yǔ)句,多行用()括起來(lái)
sql_detail=("select substr(date1,6,10)date1,round(avg(r_qty))r_qty,round(avg(e_qty))e_qty,""round(avg(r_qty)/avg(e_qty),2)*100 userate,round(avg(uptime),2)*100 uptime from 表tp "
"tp where 條件 "
"group by date1 order by date1 ")
x=c.execute(sql_detail)
#獲取sql查詢數(shù)據(jù)
data=x.fetchall()
#print(data)
#新建Excel保存數(shù)據(jù)
xl=xlwt.Workbook()
ws=xl.add_sheet("ROBOT 30 DAYS MOVE ")
#ws.write_merge(0,1,0,4,"ROBOT_30_DAYS_MOVE")
for i,item in enumerate(data):
for j,val in enumerate(item):
ws.write(i,j,val)
xl.save("E:\\ROBOT_30_DAYS_MOVE.xls")
#讀取Excel數(shù)據(jù)
data1 = xlrd.open_workbook( "E:\\ROBOT_30_DAYS_MOVE.xls")
sheet1=data1.sheet_by_index(0)
date1=sheet1.col_values(0)
r_qty=sheet1.col_values(1)
e_qty=sheet1.col_values(2)
userate=sheet1.col_values(3)
uptime=sheet1.col_values(4)
#空值處理
for a in r_qty:
if a=='':
a=0
for a in e_qty:
if a=='':
a=0
for a in userate:
if a=='':
a=0
for a in uptime:
if a=='':
a=0
#將list元素str轉(zhuǎn)int類型
r_qty = list(map(int, r_qty))
e_qty = list(map(int, e_qty))
userate = list(map(int, userate))
uptime = list(map(int, uptime))
#添加平均值mean求平均
r_qty.append(int(np.mean(r_qty)))
e_qty.append(int(np.mean(e_qty)))
userate.append(int(np.mean(userate)))
uptime.append(int(np.mean(uptime)))
date1.append('AVG')
#x軸坐標(biāo)
x=np.arange(len(date1))
bar_width=0.35
plt.figure(1,figsize=(19,10))
#繪制主坐標(biāo)軸-柱狀圖
plt.bar(np.arange(len(date1)),r_qty,label='RBT_MOVE',align='center',alpha=0.8,color='Blue',width=bar_width)
plt.bar(np.arange(len(date1))+bar_width,e_qty,label='EQP_MOVE',align='center',alpha=0.8,color='orange',width=bar_width)
#設(shè)置主坐標(biāo)軸參數(shù)
plt.xlabel('')
plt.ylabel('Move',fontsize=18)
plt.legend(loc=1, bbox_to_anchor=(0,0.97),borderaxespad = 0.)
#plt.legend(loc='upper left')
for x,y in enumerate(r_qty):
plt.text(x,y+100,'%s' % y,ha='center',va='bottom')
for x,y in enumerate(e_qty):
plt.text(x+bar_width,y+100,'%s' % y,ha='left',va='top')
plt.ylim([0,8000])
#調(diào)用plt.twinx()后可繪制次坐標(biāo)軸
plt.twinx()
#次坐標(biāo)軸參考線
target1=[90]*len(date1)
target2=[80]*len(date1)
x=list(range(len(date1)))
plt.xticks(x,date1,rotation=45)
#繪制次坐標(biāo)軸-折線圖
plt.plot(np.arange(len(date1)),userate,label='USE_RATE',color='green',linewidth=1,linestyle='solid',marker='o',markersize=3)
plt.plot(np.arange(len(date1)),uptime,label='UPTIME',color='red',linewidth=1,linestyle='--',marker='o',markersize=3)
plt.plot(np.arange(len(date1)),target1,label='90%target',color='black',linewidth=1,linestyle='dashdot')
plt.plot(np.arange(len(date1)),target2,label='80%target',color='black',linewidth=1,linestyle='dashdot')
#次坐標(biāo)軸刻度百分比顯示
plt.gca().yaxis.set_major_formatter(FuncFormatter(to_percent))
plt.xlabel('')
plt.ylabel('Rate',fontsize=18)
#圖列
plt.legend(loc=2, bbox_to_anchor=(1.01,0.97),borderaxespad = 0.)
plt.ylim([0,100])
for x,y in enumerate(userate):
plt.text(x,y-1,'%s' % y,ha='right',va='bottom',fontsize=14)
for x,y in enumerate(uptime):
plt.text(x,y+1,'%s' % y,ha='left',va='top',fontsize=14)
plt.title("ROBOT 30 DAYS MOVE")
#圖表Table顯示plt.table()
listdata=[r_qty]+[e_qty]+[userate]+[uptime]#數(shù)據(jù)
table_row=['RBT_MOVE','EQP_MOVE','USE_RATE(%)','UPTIME(%)']#行標(biāo)簽
table_col=date1#列標(biāo)簽
print(listdata)
print(table_row)
print(table_col)
the_table=plt.table(cellText=listdata,cellLoc='center',rowLabels=table_row,colLabels=table_col,rowLoc='center',colLoc='center')
#Table參數(shù)設(shè)置-字體大小太小,自己設(shè)置
the_table.auto_set_font_size(False)
the_table.set_fontsize(12)
#Table參數(shù)設(shè)置-改變表內(nèi)字體顯示比例,沒(méi)有會(huì)溢出到表格線外面
the_table.scale(1,3)
#plt.show()
plt.savefig(r"E:\\ROBOT_30_DAYS_MOVE.png",bbox_inches='tight')
#關(guān)閉SQL連接
c.close()
conn.close()
到此這篇關(guān)于Python實(shí)現(xiàn)雙軸組合圖表柱狀圖和折線圖的具體流程的文章就介紹到這了,更多相關(guān)python柱狀圖和折線圖內(nèi)容請(qǐng)搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關(guān)文章希望大家以后多多支持腳本之家!