主頁 > 知識庫 > spark通過kafka-appender指定日志輸出到kafka引發(fā)的死鎖問題

spark通過kafka-appender指定日志輸出到kafka引發(fā)的死鎖問題

熱門標簽:怎么去掉地圖標注文字 北京外呼系統(tǒng)咨詢電話 地圖標注資源分享注冊 合肥阿里辦理400電話號 廊坊地圖標注申請入口 高德地圖標注公司位置需要錢嗎 慶陽外呼系統(tǒng)定制開發(fā) 襄陽外呼增值業(yè)務線路解決方案 海南人工外呼系統(tǒng)哪家好

在采用log4j的kafka-appender收集spark任務運行日志時,發(fā)現(xiàn)提交到yarn上的任務始終ACCEPTED狀態(tài),無法進入RUNNING狀態(tài),并且會重試兩次后超時。期初認為是yarn資源不足導致,但在確認yarn資源充裕的時候問題依舊,而且基本上能穩(wěn)定復現(xiàn)。

起初是這么配置spark日志輸出到kafka的:

log4j.rootCategory=INFO, console, kafka
log4j.appender.console=org.apache.log4j.ConsoleAppender
log4j.appender.console.target=System.err
log4j.appender.console.layout=org.apache.log4j.PatternLayout
log4j.appender.console.layout.ConversionPattern=%d{yyyy/MM/dd HH:mm:ss.SSS} %p %c{1}: [${log4j.pipelineId}] %m%n

# Kafka appender
log4j.appender.kafka=org.apache.kafka.log4jappender.KafkaLog4jAppender
# Set Kafka topic and brokerList
log4j.appender.kafka.topic=yarn_spark_log
log4j.appender.kafka.brokerList=localhost:9092
log4j.appender.kafka.compressionType=none
log4j.appender.kafka.syncSend=false
log4j.appender.kafka.maxBlockMs=10
log4j.appender.kafka.layout=org.apache.log4j.PatternLayout
log4j.appender.kafka.layout.ConversionPattern=%d{yyyy/MM/dd HH:mm:ss.SSS} %p %c{1}: [${log4j.pipelineId}] %m

這里用org.apache.kafka.log4jappender.KafkaLog4jAppender默認將所有日志都輸出到kafka,這個appender已經被kafka官方維護,穩(wěn)定性應該是可以保障的。

問題定位

發(fā)現(xiàn)問題后,嘗試將輸出到kafka的規(guī)則去掉,問題解除!于是把問題定位到跟日志輸出到kafka有關。通過其他測試,證實目標kafka其實是正常的,這就非常奇怪了。

查看yarn的ResourceManager日志,發(fā)現(xiàn)有如下超時

2020-05-07 21:49:48,230 INFO org.apache.hadoop.yarn.util.AbstractLivelinessMonitor: Expired:appattempt_1578970174552_3204_000002 Timed out after 600 secs
2020-05-07 21:49:48,230 INFO org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptImpl: Updating application attempt appattempt_1578970174552_3204_000002 with final
 state: FAILED, and exit status: -1000
2020-05-07 21:49:48,231 INFO org.apache.hadoop.yarn.server.resourcemanager.rmapp.attempt.RMAppAttemptImpl: appattempt_1578970174552_3204_000002 State change from LAUNCHED to FINAL_SAV
ING on event = EXPIRE

表明,yarn本身是接收任務的,但是發(fā)現(xiàn)任務遲遲沒有啟動。在spark的場景下其實是指只有driver啟動了,但是沒有啟動executor。
而查看driver日志,發(fā)現(xiàn)日志輸出到一個地方就卡住了,不往下繼續(xù)了。通過對比成功運行和卡住的情況發(fā)現(xiàn),日志卡在這條上:

2020/05/07 19:37:10.324 INFO SecurityManager: Changing view acls to: yarn,root
2020/05/07 19:37:10.344 INFO Metadata: Cluster ID: 6iG6WHA2SoK7FfgGgWHt_A

卡住的情況下,只會打出SecurityManager這行,而無法打出Metadata這行。
猜想Metadata這行是kafka-client本身打出來的,因為整個上下文只有yarn, spark, kafka-client可能會打出這個日志。

在kafka-client 2.2.0版本中找到這個日志是輸出位置:

public synchronized void update(MetadataResponse metadataResponse, long now) {
  ...

  String newClusterId = cache.cluster().clusterResource().clusterId();
  if (!Objects.equals(previousClusterId, newClusterId)) {
    log.info("Cluster ID: {}", newClusterId);
  }
  ...
}

看到synchronized,高度懷疑死鎖。于是考慮用jstack分析:

在yarn上運行spark任務的時候,driver進程叫ApplicationMaster,executor進程叫CoarseGrainedExecutorBackend。這里首先嘗試再復現(xiàn)過程中找到drvier最終在哪個節(jié)點上運行,然后快速使用jstack -F pid>打印堆棧

jstack果然不負眾望,報告了死鎖!這里我把結果貼的全一點

[root@node1 ~]# jstack 20136
20136: Unable to open socket file: target process not responding or HotSpot VM not loaded
The -F option can be used when the target process is not responding
[root@node1 ~]# jstack -F 20136
Attaching to process ID 20136, please wait...
Debugger attached successfully.
Server compiler detected.
JVM version is 25.231-b11
Deadlock Detection:

Found one Java-level deadlock:
=============================

"kafka-producer-network-thread | producer-1":
 waiting to lock Monitor@0x00000000025fcc48 (Object@0x00000000ed680b60, a org/apache/kafka/log4jappender/KafkaLog4jAppender),
 which is held by "main"
"main":
 waiting to lock Monitor@0x00007fec9dbde038 (Object@0x00000000ee44de38, a org/apache/kafka/clients/Metadata),
 which is held by "kafka-producer-network-thread | producer-1"

Found a total of 1 deadlock.

Thread 20157: (state = BLOCKED)
 - org.apache.log4j.AppenderSkeleton.doAppend(org.apache.log4j.spi.LoggingEvent) @bci=0, line=231 (Interpreted frame)
 - org.apache.log4j.helpers.AppenderAttachableImpl.appendLoopOnAppenders(org.apache.log4j.spi.LoggingEvent) @bci=41, line=66 (Interpreted frame)
 - org.apache.log4j.Category.callAppenders(org.apache.log4j.spi.LoggingEvent) @bci=26, line=206 (Interpreted frame)
 - org.apache.log4j.Category.forcedLog(java.lang.String, org.apache.log4j.Priority, java.lang.Object, java.lang.Throwable) @bci=14, line=391 (Interpreted frame)
 - org.apache.log4j.Category.log(java.lang.String, org.apache.log4j.Priority, java.lang.Object, java.lang.Throwable) @bci=34, line=856 (Interpreted frame)
 - org.slf4j.impl.Log4jLoggerAdapter.info(java.lang.String, java.lang.Object) @bci=34, line=324 (Interpreted frame)
 - org.apache.kafka.clients.Metadata.update(org.apache.kafka.common.requests.MetadataResponse, long) @bci=317, line=365 (Interpreted frame)
 - org.apache.kafka.clients.NetworkClient$DefaultMetadataUpdater.handleCompletedMetadataResponse(org.apache.kafka.common.requests.RequestHeader, long, org.apache.kafka.common.requests.MetadataResponse) @bci=184, line=1031 (Interpreted frame)
 - org.apache.kafka.clients.NetworkClient.handleCompletedReceives(java.util.List, long) @bci=215, line=822 (Interpreted frame)
 - org.apache.kafka.clients.NetworkClient.poll(long, long) @bci=132, line=544 (Interpreted frame)
 - org.apache.kafka.clients.producer.internals.Sender.run(long) @bci=227, line=311 (Interpreted frame)
 - org.apache.kafka.clients.producer.internals.Sender.run() @bci=28, line=235 (Interpreted frame)
 - java.lang.Thread.run() @bci=11, line=748 (Interpreted frame)


Thread 20150: (state = BLOCKED)


Thread 20149: (state = BLOCKED)
 - java.lang.Object.wait(long) @bci=0 (Interpreted frame)
 - java.lang.ref.ReferenceQueue.remove(long) @bci=59, line=144 (Interpreted frame)
 - java.lang.ref.ReferenceQueue.remove() @bci=2, line=165 (Interpreted frame)
 - java.lang.ref.Finalizer$FinalizerThread.run() @bci=36, line=216 (Interpreted frame)


Thread 20148: (state = BLOCKED)
 - java.lang.Object.wait(long) @bci=0 (Interpreted frame)
 - java.lang.Object.wait() @bci=2, line=502 (Interpreted frame)
 - java.lang.ref.Reference.tryHandlePending(boolean) @bci=54, line=191 (Interpreted frame)
 - java.lang.ref.Reference$ReferenceHandler.run() @bci=1, line=153 (Interpreted frame)


Thread 20137: (state = BLOCKED)
 - java.lang.Object.wait(long) @bci=0 (Interpreted frame)
 - org.apache.kafka.clients.Metadata.awaitUpdate(int, long) @bci=63, line=261 (Interpreted frame)
 - org.apache.kafka.clients.producer.KafkaProducer.waitOnMetadata(java.lang.String, java.lang.Integer, long) @bci=160, line=983 (Interpreted frame)
 - org.apache.kafka.clients.producer.KafkaProducer.doSend(org.apache.kafka.clients.producer.ProducerRecord, org.apache.kafka.clients.producer.Callback) @bci=19, line=860 (Interpreted frame)
 - org.apache.kafka.clients.producer.KafkaProducer.send(org.apache.kafka.clients.producer.ProducerRecord, org.apache.kafka.clients.producer.Callback) @bci=12, line=840 (Interpreted frame)
 - org.apache.kafka.clients.producer.KafkaProducer.send(org.apache.kafka.clients.producer.ProducerRecord) @bci=3, line=727 (Interpreted frame)
 - org.apache.kafka.log4jappender.KafkaLog4jAppender.append(org.apache.log4j.spi.LoggingEvent) @bci=69, line=283 (Interpreted frame)
 - org.apache.log4j.AppenderSkeleton.doAppend(org.apache.log4j.spi.LoggingEvent) @bci=106, line=251 (Interpreted frame)
 - org.apache.log4j.helpers.AppenderAttachableImpl.appendLoopOnAppenders(org.apache.log4j.spi.LoggingEvent) @bci=41, line=66 (Interpreted frame)
 - org.apache.log4j.Category.callAppenders(org.apache.log4j.spi.LoggingEvent) @bci=26, line=206 (Interpreted frame)
 - org.apache.log4j.Category.forcedLog(java.lang.String, org.apache.log4j.Priority, java.lang.Object, java.lang.Throwable) @bci=14, line=391 (Interpreted frame)
 - org.apache.log4j.Category.log(java.lang.String, org.apache.log4j.Priority, java.lang.Object, java.lang.Throwable) @bci=34, line=856 (Interpreted frame)
 - org.slf4j.impl.Log4jLoggerAdapter.info(java.lang.String) @bci=12, line=305 (Interpreted frame)
 - org.apache.spark.internal.Logging$class.logInfo(org.apache.spark.internal.Logging, scala.Function0) @bci=29, line=54 (Interpreted frame)
 - org.apache.spark.SecurityManager.logInfo(scala.Function0) @bci=2, line=44 (Interpreted frame)
 - org.apache.spark.SecurityManager.setViewAcls(scala.collection.immutable.Set, java.lang.String) @bci=36, line=139 (Interpreted frame)
 - org.apache.spark.SecurityManager.init>(org.apache.spark.SparkConf, scala.Option) @bci=158, line=81 (Interpreted frame)
 - org.apache.spark.deploy.yarn.ApplicationMaster.init>(org.apache.spark.deploy.yarn.ApplicationMasterArguments) @bci=85, line=70 (Interpreted frame)
 - org.apache.spark.deploy.yarn.ApplicationMaster$.main(java.lang.String[]) @bci=25, line=802 (Interpreted frame)
 - org.apache.spark.deploy.yarn.ApplicationMaster.main(java.lang.String[]) @bci=4 (Interpreted frame)

到這里,已經確定是死鎖,導致driver一開始就運行停滯,那么當然無法提交executor執(zhí)行。
具體的死鎖稍后分析,先考慮如何解決。從感性認識看,似乎只要不讓kafka-client的日志也輸出到kafka即可。實驗后,發(fā)現(xiàn)果然如此:如果只輸出org.apache.spark的日志就可以正常執(zhí)行。

根因分析

從stack的結果看,造成死鎖的是如下兩個線程:

  • kafka-client內部的網(wǎng)絡線程spark
  • 主入口線程

兩個線程其實都是卡在打日志上了,觀察堆棧可以發(fā)現(xiàn),兩個線程同時持有了同一個log對象。而這個log對象實際上是kafka-appender。而kafka-appender本質上持有kafka-client,及其內部的Metadata對象。log4j的doAppend為了保證線程安全也用synchronized修飾了:

public
 synchronized 
 void doAppend(LoggingEvent event) {
  if(closed) {
   LogLog.error("Attempted to append to closed appender named ["+name+"].");
   return;
  }
  
  if(!isAsSevereAsThreshold(event.level)) {
   return;
  }

  Filter f = this.headFilter;
  
  FILTER_LOOP:
  while(f != null) {
   switch(f.decide(event)) {
   case Filter.DENY: return;
   case Filter.ACCEPT: break FILTER_LOOP;
   case Filter.NEUTRAL: f = f.next;
   }
  }
  
  this.append(event);  
 }

于是事情開始了:

  • main線程嘗試打日志,首先進入了synchronized的doAppend,即獲取了kafka-appender的鎖
  • kafka-appender內部需要調用kafka-client發(fā)送日志到kafka,最終調用到Thread 20137展示的,運行到Metadata.awaitUpdate(也是個synchronized方法),內部的wait會嘗試獲取metadata的鎖。(詳見https://github.com/apache/kaf...)
  • 但此時,kafka-producer-network-thread線程剛好進入了上文提到的打Cluster ID這個日志的這個階段(update方法也是synchronized的),也就是說kafka-producer-network-thread線程獲得了metadata對象的鎖
  • kafka-producer-network-thread線程要打印日志同樣執(zhí)行synchronized的doAppend,即獲取了kafka-appender的鎖

上圖main-thread持有了log對象鎖,要求獲取metadata對象鎖;kafka-producer-network-thread持有了metadata對象鎖,要求獲取log對象鎖于是造成了死鎖。

總結

到此這篇關于spark通過kafka-appender指定日志輸出到kafka引發(fā)的死鎖的文章就介紹到這了,更多相關spark指定日志輸出內容請搜索腳本之家以前的文章或繼續(xù)瀏覽下面的相關文章希望大家以后多多支持腳本之家!

您可能感興趣的文章:
  • Docker搭建Zookeeper&Kafka集群的實現(xiàn)
  • 詳解使用docker搭建kafka環(huán)境
  • Docker + Nodejs + Kafka + Redis + MySQL搭建簡單秒殺環(huán)境
  • Python通過kerberos安全認證操作kafka方式
  • Kafka Java Producer代碼實例詳解
  • Spring boot集成Kafka消息中間件代碼實例
  • Java實現(xiàn)Kafka生產者消費者代碼實例
  • Spring Boot集群管理工具KafkaAdminClient使用方法解析
  • Kafka單節(jié)點偽分布式集群搭建實現(xiàn)過程詳解

標簽:商丘 平頂山 哈密 臺州 株洲 鶴崗 鎮(zhèn)江 綿陽

巨人網(wǎng)絡通訊聲明:本文標題《spark通過kafka-appender指定日志輸出到kafka引發(fā)的死鎖問題》,本文關鍵詞  spark,通過,kafka-appender,指定,;如發(fā)現(xiàn)本文內容存在版權問題,煩請?zhí)峁┫嚓P信息告之我們,我們將及時溝通與處理。本站內容系統(tǒng)采集于網(wǎng)絡,涉及言論、版權與本站無關。
  • 相關文章
  • 下面列出與本文章《spark通過kafka-appender指定日志輸出到kafka引發(fā)的死鎖問題》相關的同類信息!
  • 本頁收集關于spark通過kafka-appender指定日志輸出到kafka引發(fā)的死鎖問題的相關信息資訊供網(wǎng)民參考!
  • 推薦文章